

 EmErging TrEnds in machinE inTElligEncE and Big daTa

Code Smells in Software Development Causes, Consequences, and Detection Strategies
[37]

Code Smells in Software

Development Causes,

Consequences, and

Detection Strategies

Manish Raj Khatri

Department of Computer Science, Amrit

Science Campus, Tribhuvan

University, Kathmandu, Nepal

Anushka Thapa

Department of Computer Science, North

Campus, Tribhuvan University, Kathmandu,

Nepal

aBsTracT
Code smells, indicative of potential design

weaknesses in software, have garnered

attention due to their subtle yet impactful

implications on software maintainability.

These symptoms, unlike explicit bugs or

errors, hint at deeper architectural or design

issues. This study delves into the origins, key

manifestations, repercussions, and strategies

to pinpoint these smells. Primary causes

include inexperienced development, looming

deadlines, evolving or ambiguous

requirements, a neglect of refactoring, and

insufficient code review processes. Such

origins can manifest as widely recognized

code smells, such as Large Classes,

Duplicated Code, and Primitive Obsession.

The presence of these patterns, while not

immediately problematic, can precipitate

several negative outcomes. These include

diminished maintainability, an increased

propensity for bugs, stunted development

processes, limited code reusability, and

reduced code comprehensibility. To address

these concerns, this research advocates for a

multipronged detection approach. Regular

manual code reviews are fundamental,

augmented by automated static analysis tools

like SonarQube and PMD. Metrics such as

cyclomatic complexity offer quantitative

insights into code health. Moreover,

integrating these checks within Continuous

Integration systems can preemptively

identify and mitigate these smells.

Keywords: Code smells, Software

maintainability, Design weaknesses, Static

analysis tools, Refactoring

inTroducTion
Code smells refer to patterns or

characteristics in source code that signal

potential problems, inefficiencies, or

complexities. Although they don't necessarily

represent errors or bugs, they often indicate

areas of code that may require refactoring for

improved readability, maintainability, or

performance [1]–[3]. Code smells can also

serve as early warnings for potential issues

that could cause difficulties in the debugging

process, the addition of new features, or the

scalability of the software. There are various

types of code smells such as "Long Method,"

 EmErging TrEnds in machinE inTElligEncE and Big daTa

Code Smells in Software Development Causes, Consequences, and Detection Strategies
[38]

where a method does more than it should, or

"Data Clumps," where the same set of data

appears together in numerous places. Another

example is "Feature Envy," which occurs

when an object excessively uses the methods

of another object, suggesting a potential need

for object reorganization [4].

The components that contribute to code

smells can be categorized in several

dimensions. One such dimension is the scope

of the smell: is it localized within a single

method (e.g., "Long Method" or "Duplicated

Code") or does it pervade an entire class (e.g.,

"Large Class" or "God Class")? Another

dimension is the symptom that the smell

evokes. For instance, "Inappropriate

Intimacy" between classes indicates a high

degree of coupling, whereas "Primitive

Obsession" denotes excessive use of

primitive types instead of creating small

classes to encapsulate related data and

behaviors. Complexity is another dimension,

encompassing smells like "Switch

Statements" or "Conditional Complexity,"

which make the code harder to follow and

maintain [5], [6].

Detecting code smells is often a mix of

automated tooling and human expertise.

While certain code smells can be identified

through automated static code analysis, such

as finding duplicated blocks of code or

methods with too many lines, other smells

like "Speculative Generality" (building

functionality that isn’t needed yet) require a

human reviewer's contextual understanding

of the software project’s requirements and

goals. Tools can flag potential issues, but

human judgment is often needed to evaluate

the trade-offs of refactoring the smelly code

versus leaving it as is, especially considering

the potential risks and costs associated with

making changes to a codebase.

causEs
One of the most common causes for code

smells is a lack of experience on the part of

the developers. Junior developers, or those

new to a particular language or framework,

may not be familiar with best practices or the

idiosyncrasies that can make or break code

quality [7], [8]. They may employ anti-

patterns unknowingly, use incorrect data

structures, or write convoluted logic that

could have been simplified. Often, this is not

due to a lack of intelligence or capability, but

simply a lack of exposure to better methods.

Over time, as these developers gain more

experience and knowledge, they may be more

likely to recognize these smells themselves,

but initial ignorance can sow seeds of trouble

in a codebase [9].

Another major factor contributing to code

smells is deadline pressures. Developers

often work under tight schedules, and when

the clock is ticking, it can be tempting to take

shortcuts in order to get functionality out the

door. This might involve hardcoding values,

neglecting to separate concerns, or bypassing

necessary validation checks. While these

measures can expedite the immediate goal of

meeting a deadline, they often lead to

 EmErging TrEnds in machinE inTElligEncE and Big daTa

Code Smells in Software Development Causes, Consequences, and Detection Strategies
[39]

technical debt that will need to be paid back

later, often with interest, in the form of more

time and resources spent on refactoring and

debugging [10]. A third cause of code smells

is poorly defined requirements. When a

project’s requirements are ambiguous,

incomplete, or constantly changing, it can be

difficult for developers to produce high-

quality code [11], [12]. They may be forced

to make assumptions or create workarounds

that result in messy or confusing code. For

example, if requirements change mid-way

through a project, developers may have to

"patch" existing code to fit the new

specifications. This often leads to

inconsistency and can make the code difficult

to read and maintain [13].

Lack of refactoring is also a significant cause

of code smells. Software development is a

dynamic process. As new features are added,

and existing ones are changed or removed,

the code needs to evolve. When developers

ignore this ongoing need for refactoring, code

can easily become a tangled web of

dependencies and hacks. In essence, what

might have been a clean and effective

solution at one point can deteriorate into a

code smell if not updated to match the

changing context or requirements [14].

Inadequate reviews constitute another reason

why suboptimal code may proliferate. Code

reviews are a critical aspect of software

development, offering a venue for catching

mistakes, improving code quality, and

sharing knowledge among team members.

When code reviews are rushed, infrequent, or

superficial, problematic code can go

undetected. Developers might miss

opportunities to catch redundancies,

unnecessary complexities, or other issues that

make the code harder to maintain and

understand [15].

Code smells often emerge as a result of a

variety of factors that range from individual

developer experience to systemic issues like

deadlines and changing requirements.

Addressing the root causes can be

challenging but is necessary for maintaining

a healthy codebase in the long run.

Preventative measures, such as mentorship

for less experienced developers, realistic

scheduling, clear requirements, ongoing

refactoring, and thorough code reviews, can

all contribute to reducing the likelihood of

code smells appearing in the first place [16],

[17].

common codE smElls
Duplicated code is a pervasive issue in

software development. When the same piece

of code appears in multiple locations, it often

suggests that the logic could be centralized or

abstracted for reusability. The peril of

duplicated code lies in the increased

maintenance cost and the potential for errors.

If a developer updates the logic in one

location but forgets to make the

corresponding change in another,

inconsistencies arise. This creates a fertile

ground for bugs and makes the codebase

harder to manage over time.

 EmErging TrEnds in machinE inTElligEncE and Big daTa

Code Smells in Software Development Causes, Consequences, and Detection Strategies
[40]

A Long Parameter List is another code smell

that often arises in evolving codebases.

Methods with too many parameters can be

difficult to understand, and they often

indicate that the method is doing too much.

Numerous parameters can also make it easy

to introduce errors, as it becomes

cumbersome to remember the correct order

or purpose of each argument. Ideally,

methods should operate with fewer

arguments, and objects should encapsulate

related sets of data that can be passed around

together. This enhances readability and

reduces the likelihood of mistakes [18].

Feature Envy is an anti-pattern where a class

excessively uses methods from another class

[19], indicating that the behavior might

belong in the latter. Feature envy can

compromise the principles of object-oriented

programming, particularly encapsulation and

cohesion. It can make the code harder to

understand and modify, as behavior that

logically belongs in one class is spread across

multiple locations. This dispersed logic

increases the risk of errors during updates or

refactoring, as changes in one class may

inadvertently affect another [20].

Switch Statements present a unique kind of

problem. While sometimes necessary, an

overreliance on switch statements often

indicates that a codebase could benefit from

polymorphism or other object-oriented

principles. Extensive use of switch

statements makes the code less flexible and

harder to extend. For example, adding a new

case would require modifying existing switch

structures, risking unintended consequences.

Using polymorphism allows for more easily

extendable and maintainable code, as new

behaviors can be added without altering

existing code.

Lazy Class refers to classes that don't do

enough to justify their existence. Such classes

can increase the complexity of a codebase

without adding significant value, making it

harder to navigate and understand the system

as a whole [21]. They often result from

incomplete refactoring or premature

optimization efforts. Similarly, Data Clumps,

where the same group of variables is passed

around in multiple places, indicate a lack of

structure or abstraction. This can make the

code more error-prone, as changes to one part

of the data clump will likely necessitate

changes in all places where it appears [22].

Finally, Primitive Obsession is a code smell

that indicates an overreliance on primitive

types like integers and strings to represent

complex ideas. For example, using a string to

represent a date instead of a dedicated Date

object. This can lead to type errors, decreased

readability, and lost opportunities for

encapsulating behavior. Encouragingly,

many of these code smells can be mitigated

through proper design patterns, disciplined

coding practices, and regular refactoring.

consEquEncEs
The impact of code smells on a software

project is not just theoretical; it manifests in

several tangible ways that can slow down

 EmErging TrEnds in machinE inTElligEncE and Big daTa

Code Smells in Software Development Causes, Consequences, and Detection Strategies
[41]

development and compromise code quality.

One of the most significant consequences is

decreased maintainability. A codebase

riddled with smells is often a labyrinth that is

hard to navigate and understand. This makes

it more time-consuming to implement even

minor changes or to add new features. The

convoluted nature of such a codebase could

also mean that developers are afraid to make

changes for fear of introducing new bugs,

essentially freezing the project's ability to

evolve effectively [23].

Speaking of bugs, another serious

consequence of code smells is the increased

likelihood of errors cropping up [24], [25].

Complex, redundant, or poorly structured

code provides ample hiding places for bugs.

These issues can range from simple, easily

detected errors to more insidious bugs that

only surface under particular conditions. As

these accumulate, the stability of the

application becomes compromised, which

might not only affect the user experience but

could also pose security risks depending on

the nature of the project [26].

Slower development speed is another by-

product of code smells. When a codebase

becomes harder to understand, new features

take longer to implement. This can create a

feedback loop where deadline pressures lead

to more code smells, further reducing

development speed. This is particularly

detrimental in today's fast-paced software

development environments, where the ability

to quickly adapt and release new features can

be a critical competitive advantage. Any

slowdowns can lead to missed market

opportunities and reduced profitability.

Reduced code reusability is another issue that

arises from code smells. Ideally, a well-

designed codebase will allow for pieces of

code to be reused in different parts of the

application or even in entirely different

projects. However, the presence of code

smells often means that the code is too

specialized, redundant, or entangled to be

easily reused. This not only impacts the

current project but can also limit a team's

future efforts, forcing them to reinvent the

wheel each time they need functionality that

could have been reused from an earlier

project.

Another less obvious but equally impactful

consequence is decreased readability, which

affects the onboarding of new team members.

In a codebase full of smells, the learning

curve becomes significantly steeper. New

developers may need more time to become

productive members of the team, as they have

to wrestle with understanding the intricacies

of a complex codebase [27], [28]. This can

lead to longer development cycles and

increased costs in terms of both time and

money [29].

In a world where software projects are often

complex and always evolving, the

consequences of code smells can be severe.

They may not always be immediately visible,

but over time, they can significantly affect a

team's productivity, the quality of the

 EmErging TrEnds in machinE inTElligEncE and Big daTa

Code Smells in Software Development Causes, Consequences, and Detection Strategies
[42]

software, and ultimately, the success of the

project. Given these potential pitfalls,

investing in good coding practices and

regular refactoring becomes not just a matter

of professional pride but a critical business

imperative.

dETEcTion sTraTEgiEs
Manual Code Reviews are structured

evaluations where developers examine each

other's code to identify issues, including code

smells. This method incorporates the

expertise and judgment of multiple team

members, making it possible to catch subtle

or context-specific problems that automated

tools might overlook. It fosters a culture of

collective code ownership and shared

responsibility for the codebase's quality. The

downside is that manual reviews can be time-

consuming and their effectiveness is often

dependent on the skill level of the reviewers.

Nonetheless, they serve as an invaluable tool

for both detecting issues and for educational

purposes, helping team members improve

their coding skills through peer feedback

[30].

Automated Static Analysis Tools are software

applications designed to scan a codebase

without executing it, looking for specific

patterns that are indicative of code smells,

security vulnerabilities, or other issues. Tools

like SonarQube, PMD, and Checkstyle have

pre-configured rules to identify common

smells such as duplicated code or long

methods. The advantage of these tools is their

ability to quickly analyze large volumes of

code, providing a first line of defense against

deteriorating code quality. While they are

efficient, these tools can sometimes generate

false positives or lack the nuance to

understand context-specific requirements,

making human oversight essential [31].

Metrics Analysis is the practice of collecting

and evaluating numerical data related to code

quality. Various metrics like cyclomatic

complexity, which measures the number of

independent paths through a block of code, or

depth of inheritance, which counts the levels

of inheritance in object-oriented languages,

can provide objective indicators of code

health. These metrics can be tracked over

time to measure the impact of changes and to

flag potential areas of concern. They serve as

a valuable supplement to other review

methods, providing quantifiable data that can

guide refactoring efforts [32], [33]. However,

metrics alone cannot capture every nuance of

code quality, and incorrect interpretation can

lead to misguided refactoring efforts [34].

Continuous Integration (CI) Systems offer a

continuous approach to code smell detection.

In a CI pipeline, code is automatically built

and tested every time a change is made,

providing immediate feedback to developers.

By integrating code smell detection into this

process, it's possible to catch problematic

patterns before they are merged into the main

codebase. This real-time feedback enables

teams to address issues promptly, reducing

the technical debt that can accumulate when

problems are left unaddressed [35], [36].

 EmErging TrEnds in machinE inTElligEncE and Big daTa

Code Smells in Software Development Causes, Consequences, and Detection Strategies
[43]

While highly effective for catching a wide

array of issues early, CI systems require

proper configuration and maintenance, and

they cannot entirely replace the nuanced

understanding that human reviewers bring to

the table [37].

Refactoring Sessions are dedicated time

periods where the primary objective is to

improve the codebase, without the pressure

of adding new functionalities or fixing

existing bugs. These sessions provide an

opportunity to focus solely on eliminating

code smells and improving code quality.

They are particularly useful for tackling more

complex refactoring tasks that require a

deeper understanding of the code and its

architecture. Through regular refactoring

sessions, teams can systematically reduce

technical debt, making the codebase easier to

work with and less prone to bugs. They also

offer an educational experience, allowing less

experienced developers to learn better coding

practices from their more experienced peers

[38].

Detecting code smells is the first crucial step

in improving the quality of a software

project. Manual code reviews are a traditional

but effective approach for identifying

problematic code. In this process, team

members regularly review each other's code,

looking for signs of bad practices or areas that

need improvement. Because human

judgment is involved, this method can catch

subtle issues that automated tools might miss

[39], [40]. However, it's also time-consuming

and relies on the expertise of the reviewers,

which can vary from person to person.

Automated Static Analysis Tools like

SonarQube, PMD, or Checkstyle offer a more

automated approach to identifying code

smells. These tools scan the codebase for

known patterns that are likely to be

problematic. The benefit of using automated

tools is that they can quickly analyze large

codebases and identify issues with

consistency, saving human reviewers

valuable time. However, they are often not as

nuanced as a human reviewer and might

produce false positives or overlook context-

specific issues [41]

Metrics Analysis provides a quantitative

approach to identifying code smells. By

monitoring various code metrics such as

cyclomatic complexity, depth of inheritance,

or class cohesion, developers can get an

objective measure of code quality. High

cyclomatic complexity, for example, could

indicate that a function is doing too much and

might be a candidate for refactoring. This

approach is particularly useful for large

projects where manual reviews are

impractical due to the sheer size of the

codebase. Metrics can flag potential problem

areas that warrant closer examination,

although interpreting these metrics correctly

does require expertise [42].

Continuous Integration (CI) Systems provide

an ongoing strategy for catching code smells.

By integrating smell detection tools into a CI

pipeline, you can automatically scan for

 EmErging TrEnds in machinE inTElligEncE and Big daTa

Code Smells in Software Development Causes, Consequences, and Detection Strategies
[44]

issues every time code is committed. This

ensures that problems are caught early, before

they become deeply ingrained in the

codebase [43]. CI systems often include a

suite of tests that the code must pass before

being merged, and adding smell detection to

this suite can make the process even more

robust. However, CI can only catch issues

that it's configured to look for, so it's not a

complete substitute for other forms of review

[44].

Regularly scheduled Refactoring Sessions

serve as another valuable strategy for

detecting and eliminating code smells. In

these sessions, the sole purpose is to clean up

the code, rather than to add new features or

fix bugs. This allows developers to focus

entirely on improving code quality, making it

easier to spot and remove smells. Refactoring

sessions also provide an opportunity for less

experienced team members to learn from

more seasoned developers, promoting better

coding practices across the team [45]. Each

of these detection strategies has its own

strengths and weaknesses, and they are often

most effective when used in combination.

Manual reviews provide nuance, automated

tools offer speed and consistency, metrics

offer quantifiable data, CI systems provide

ongoing checks, and refactoring sessions

allow for focused improvement. By

employing a mix of these strategies, teams

can significantly improve their ability to

detect and eliminate code smells, leading to

cleaner, more maintainable codebases [46].

conclusion
Code smells are symptomatic of underlying

issues in a software project that, while not

breaking the functionality, can lead to

problems in readability, maintainability, and

scalability. They serve as red flags that warn

developers of sections in the code that may

require attention or restructuring. Although

these indicators are not outright errors, they

do highlight weak spots that might make

future adjustments or debugging more

challenging. Code smells can be as simple as

an excessively long function that tries to do

too much, or as complex as a class that has

assumed too many responsibilities, thereby

violating the Single Responsibility Principle,

a key tenet of object-oriented programming

[47].

The identification of code smells involves

several components and methods. First,

there's the scope of where the smell occurs.

Some smells are localized, affecting only a

single method or function. Others might span

an entire class or even multiple classes,

suggesting architectural issues. The second

component is the type of issue that the smell

is signaling. For instance, "Duplicated Code"

is often a sign that a particular logic has been

used in more than one place and may be

better suited as a separate method or class. On

the other hand, a "Large Class" might

indicate that a single class is doing too much

and needs to be broken down into smaller,

more focused classes. Finally, the severity of

the smell is another component to consider.

While some smells may be more of an

 EmErging TrEnds in machinE inTElligEncE and Big daTa

Code Smells in Software Development Causes, Consequences, and Detection Strategies
[45]

annoyance, others may hint at structural

issues that can significantly affect the

project's long-term viability [48]. Detecting

and resolving code smells is usually a

collaborative effort between automated tools

and human intervention. Static code analysis

tools can automatically scan a codebase and

flag potential smells, like methods that are

too long or variables that are poorly named.

However, not all code smells can be caught

by these tools. For example, identifying a

"Data Clump," or a set of variables that are

always used together, often requires

contextual understanding that a tool can't

provide. Human reviewers bring this context

to the table, employing their knowledge of

the project’s requirements and potential

future changes to determine the real impact

of a code smell and the necessity of

refactoring [49].

Code smells often arise due to a variety of

factors that contribute to less-than-ideal

coding practices. One common reason is the

lack of experience among junior developers,

who may not be familiar with the best

practices to avoid certain issues like overuse

of primitives or passing around the same

group of variables in multiple places.

Deadlines also play a significant role; the

pressure to deliver on time can lead to hastily

written, suboptimal code that leaves behind

problematic areas that are hard to maintain or

extend. Ambiguous or frequently changing

project requirements can further complicate

matters, as developers may then produce

quick, temporary solutions that eventually

become permanent, leading to lingering

smells. Another contributing factor is the lack

of regular refactoring, which means that code

can accumulate issues over time as it evolves.

Finally, inadequate reviews or the absence of

peer review processes can result in code

smells going unnoticed and unaddressed.

Common code smells can vary in nature and

complexity but often fall into recognizable

patterns that developers should be wary of. A

class or method that has grown too large can

be a clear indicator of a section of code that

is trying to do too much, potentially making

it harder to understand and maintain.

Duplicated code, where the same code

structure is found in more than one location,

can make future modifications cumbersome

and error-prone. Long parameter lists in

methods can make the code confusing and

challenging to work with, while classes that

excessively use methods from another class,

known as Feature Envy, may signal

responsibilities that are not well-distributed.

Other smells like extensive use of switch

statements, classes that do very little, or

multiple places where the same group of

variables is used can also indicate issues that

require attention [50].

The consequences of ignoring code smells

can be detrimental over time, affecting

various aspects of software development.

One immediate impact is the decrease in code

maintainability; the more smells present, the

harder it becomes to modify, extend or debug

the software. This lack of maintainability also

 EmErging TrEnds in machinE inTElligEncE and Big daTa

Code Smells in Software Development Causes, Consequences, and Detection Strategies
[46]

increases the likelihood of bugs creeping into

the system, as convoluted or overly complex

code sections can become hard to test

effectively. Development speed can suffer as

well, especially as new team members

struggle to understand a codebase riddled

with smells, slowing down the addition of

new features. Moreover, the presence of code

smells can significantly reduce the reusability

of code, limiting the potential for components

to be used in different parts of the application

or even in different projects. Lastly, code

readability takes a hit, making it difficult for

new or even existing team members to

understand the code's logic, thereby

steepening the learning curve.

Identifying code smells can be accomplished

through various strategies, each with its

advantages and limitations. Manual code

reviews remain a tried-and-true method,

wherein peers review each other's code to

spot any potential issues. This approach

brings the benefit of human intuition and

contextual understanding but can be time-

consuming. Automated static analysis tools

can scan a codebase for known code smell

patterns and are especially useful for quickly

identifying common smells like duplicated

code or long methods. However, these tools

might lack the contextual understanding that

a human reviewer would have. Metrics

analysis can offer a more quantitative

approach, focusing on aspects like

cyclomatic complexity or depth of

inheritance to flag potential problems [51]–

[53]. Continuous Integration systems can

also incorporate code smell detection to catch

issues before they get merged into the main

codebase, thereby acting as a preventative

measure. Lastly, scheduling dedicated

refactoring sessions allows developers to

focus solely on cleaning up the code, which

not only helps in identifying existing smells

but also in preventing the introduction of new

ones.

rEfErEncEs
[1] S. Slinger, “Code smell detection in

eclipse,” Delft University of Technology,

2005.

[2] A. Yamashita and L. Moonen, “Do

developers care about code smells? An

exploratory survey,” in 2013 20th

Working Conference on Reverse

Engineering (WCRE), 2013, pp. 242–

251.

[3] A. Hamid, M. Ilyas, and M. Hummayun,

“A comparative study on code smell

detection tools,” International Journal

of, 2013.

[4] Y. Huang et al., “Behavior-driven query

similarity prediction based on pre-

trained language models for e-

commerce search,” 2023.

[5] D. I. K. Sjøberg, A. Yamashita, B. C. D.

Anda, A. Mockus, and T. Dybå,

“Quantifying the Effect of Code Smells

on Maintenance Effort,” IEEE Trans.

Software Eng., vol. 39, no. 8, pp. 1144–

1156, Aug. 2013.

[6] F. Pecorelli, F. Palomba, D. Di Nucci,

and A. De Lucia, “Comparing Heuristic

and Machine Learning Approaches for

Metric-Based Code Smell Detection,” in

2019 IEEE/ACM 27th International

 EmErging TrEnds in machinE inTElligEncE and Big daTa

Code Smells in Software Development Causes, Consequences, and Detection Strategies
[47]

Conference on Program

Comprehension (ICPC), 2019, pp. 93–

104.

[7] E. Murphy-Hill and A. P. Black, “An

interactive ambient visualization for

code smells,” in Proceedings of the 5th

international symposium on Software

visualization, Salt Lake City, Utah,

USA, 2010, pp. 5–14.

[8] T. Sharma, V. Efstathiou, P. Louridas,

and D. Spinellis, “Code smell detection

by deep direct-learning and transfer-

learning,” J. Syst. Softw., vol. 176, p.

110936, Jun. 2021.

[9] H. Vijayakumar, A. Seetharaman, and

K. Maddulety, “Impact of AIServiceOps

on Organizational Resilience,” 2023,

pp. 314–319.

[10] J. Gesi, H. Wang, B. Wang, A. Truelove,

J. Park, and I. Ahmed, “Out of Time: A

Case Study of Using Team and

Modification Representation Learning

for Improving Bug Report Resolution

Time Prediction in Ebay,” Available at

SSRN 4571372, 2023.

[11] D. Sahin, M. Kessentini, S. Bechikh,

and K. Deb, “Code-Smell Detection as a

Bilevel Problem,” ACM Trans. Softw.

Eng. Methodol., vol. 24, no. 1, pp. 1–44,

Oct. 2014.

[12] S. Dewangan, R. S. Rao, A. Mishra, and

M. Gupta, “A Novel Approach for Code

Smell Detection: An Empirical Study,”

IEEE Access, vol. 9, pp. 162869–

162883, 2021.

[13] R. S. S. Dittakavi, “Deep Learning-

Based Prediction of CPU and Memory

Consumption for Cost-Efficient Cloud

Resource Allocation,” Sage Science

Review of Applied Machine Learning,

vol. 4, no. 1, pp. 45–58, 2021.

[14] F. A. Fontana, J. Dietrich, and B. Walter,

“Antipattern and code smell false

positives: Preliminary conceptualization

and classification,” 2016 IEEE 23rd,

2016.

[15] J. Gesi, X. Shen, Y. Geng, Q. Chen, and

I. Ahmed, “Leveraging Feature Bias for

Scalable Misprediction Explanation of

Machine Learning Models,” in

Proceedings of the 45th International

Conference on Software Engineering

(ICSE), 2023.

[16] S. Olbrich, D. S. Cruzes, V. Basili, and

N. Zazworka, “The evolution and

impact of code smells: A case study of

two open source systems,” in 2009 3rd

International Symposium on Empirical

Software Engineering and

Measurement, 2009, pp. 390–400.

[17] F. Palomba, “Textual Analysis for Code

Smell Detection,” in 2015 IEEE/ACM

37th IEEE International Conference on

Software Engineering, 2015, vol. 2, pp.

769–771.

[18] J. Gesi et al., “Code smells in machine

learning systems,” arXiv preprint

arXiv:2203.00803, 2022.

[19] M. Tufano et al., “When and Why Your

Code Starts to Smell Bad,” in 2015

IEEE/ACM 37th IEEE International

Conference on Software Engineering,

2015, vol. 1, pp. 403–414.

[20] H. Vijayakumar, “Revolutionizing

Customer Experience with AI: A Path to

Increase Revenue Growth Rate,” 2023,

pp. 1–6.

 EmErging TrEnds in machinE inTElligEncE and Big daTa

Code Smells in Software Development Causes, Consequences, and Detection Strategies
[48]

[21] F. Palomba, G. Bavota, and M. Di Penta,

“Do they really smell bad? a study on

developers’ perception of bad code

smells,” 2014 IEEE, 2014.

[22] H. Vijayakumar, “The Impact of AI-

Innovations and Private AI-Investment

on U.S. Economic Growth: An

Empirical Analysis,” Reviews of

Contemporary Business Analytics, vol.

4, no. 1, pp. 14–32, 2021.

[23] H. Vijayakumar, “Impact of AI-

Blockchain Adoption on Annual

Revenue Growth: An Empirical

Analysis of Small and Medium-sized

Enterprises in the United States,”

International Journal of Business

Intelligence and Big Data Analytics,

vol. 4, no. 1, pp. 12–21, 2021.

[24] P. Danphitsanuphan and T. Suwantada,

“Code Smell Detecting Tool and Code

Smell-Structure Bug Relationship,” in

2012 Spring Congress on Engineering

and Technology, 2012, pp. 1–5.

[25] F. Pecorelli, F. Palomba, F. Khomh, and

A. De Lucia, “Developer-Driven Code

Smell Prioritization,” in Proceedings of

the 17th International Conference on

Mining Software Repositories, Seoul,

Republic of Korea, 2020, pp. 220–231.

[26] A. Groce et al., “Evaluating and

improving static analysis tools via

differential mutation analysis,” in 2021

IEEE 21st International Conference on

Software Quality, Reliability and

Security (QRS), 2021, pp. 207–218.

[27] F. Palomba, G. Bavota, M. Di Penta, F.

Fasano, R. Oliveto, and A. De Lucia, “A

large-scale empirical study on the

lifecycle of code smell co-occurrences,”

Information and Software Technology,

vol. 99, pp. 1–10, Jul. 2018.

[28] A. Yamashita and L. Moonen, “To what

extent can maintenance problems be

predicted by code smell detection?–An

empirical study,” Information and

Software Technology, 2013.

[29] S. Khanna, “Brain Tumor Segmentation

Using Deep Transfer Learning Models

on The Cancer Genome Atlas (TCGA)

Dataset,” Sage Science Review of

Applied Machine Learning, vol. 2, no. 2,

pp. 48–56, 2019.

[30] S. Khanna and S. Srivastava, “Patient-

Centric Ethical Frameworks for Privacy,

Transparency, and Bias Awareness in

Deep Learning-Based Medical

Systems,” Applied Research in Artificial

Intelligence and Cloud Computing, vol.

3, no. 1, pp. 16–35, 2020.

[31] H. Vijayakumar, “Business Value

Impact of AI-Powered Service

Operations (AIServiceOps),” Available

at SSRN 4396170, 2023.

[32] D. Di Nucci, F. Palomba, D. A.

Tamburri, A. Serebrenik, and A. De

Lucia, “Detecting code smells using

machine learning techniques: Are we

there yet?,” in 2018 IEEE 25th

International Conference on Software

Analysis, Evolution and Reengineering

(SANER), 2018, pp. 612–621.

[33] J. Schumacher, N. Zazworka, and F.

Shull, “Building empirical support for

automated code smell detection,”

Proceedings of the, 2010.

[34] J. Gesi, J. Li, and I. Ahmed, “An

empirical examination of the impact of

bias on just-in-time defect prediction,”

 EmErging TrEnds in machinE inTElligEncE and Big daTa

Code Smells in Software Development Causes, Consequences, and Detection Strategies
[49]

in Proceedings of the 15th ACM/IEEE

International Symposium on Empirical

Software Engineering and Measurement

(ESEM), 2021, pp. 1–12.

[35] E. van Emden and L. Moonen, “Java

quality assurance by detecting code

smells,” in Ninth Working Conference

on Reverse Engineering, 2002.

Proceedings., 2002, pp. 97–106.

[36] F. A. Fontana, V. Ferme, M. Zanoni, and

R. Roveda, “Towards a prioritization of

code debt: A code smell Intensity

Index,” in 2015 IEEE 7th International

Workshop on Managing Technical Debt

(MTD), 2015, pp. 16–24.

[37] S. Khanna, “COMPUTERIZED

REASONING AND ITS

APPLICATION IN DIFFERENT

AREAS,” NATIONAL JOURNAL OF

ARTS, COMMERCE & SCIENTIFIC

RESEARCH REVIEW, vol. 4, no. 1, pp.

6–21, 2017.

[38] S. Khanna, “A Review of AI Devices in

Cancer Radiology for Breast and Lung

Imaging and Diagnosis,” International

Journal of Applied Health Care

Analytics, vol. 5, no. 12, pp. 1–15, 2020.

[39] F. Arcelli Fontana and M. Zanoni,

“Code smell severity classification

using machine learning techniques,”

Knowledge-Based Systems, vol. 128, pp.

43–58, Jul. 2017.

[40] F. Arcelli Fontana, M. V. Mäntylä, and

M. Zanoni, “Comparing and

experimenting machine learning

techniques for code smell detection,”

Empir. Softw. Eng., 2016.

[41] R. S. S. Dittakavi, “Evaluating the

Efficiency and Limitations of

Configuration Strategies in Hybrid

Cloud Environments,” International

Journal of Intelligent Automation and

Computing, vol. 5, no. 2, pp. 29–45,

2022.

[42] S. Khanna, “EXAMINATION AND

PERFORMANCE EVALUATION OF

WIRELESS SENSOR NETWORK

WITH VARIOUS ROUTING

PROTOCOLS,” International Journal

of Engineering & Science Research, vol.

6, no. 12, pp. 285–291, 2016.

[43] Z. Feng, D. Guo, D. Tang, N. Duan, and

X. Feng, “Codebert: A pre-trained

model for programming and natural

languages,” arXiv preprint arXiv, 2020.

[44] F. Jirigesi, A. Truelove, and F. Yazdani,

“Code Clone Detection Using

Representation Learning,” 2019.

[45] F. N. U. Jirigesi, “Personalized Web

Services Interface Design Using

Interactive Computational Search.”

2017.

[46] R. S. S. Dittakavi, “Dimensionality

Reduction Based Intrusion Detection

System in Cloud Computing

Environment Using Machine Learning,”

International Journal of Information

and Cybersecurity, vol. 6, no. 1, pp. 62–

81, 2022.

[47] H. Vijayakumar, “Unlocking Business

Value with AI-Driven End User

Experience Management (EUEM),” in

2023 5th International Conference on

Management Science and Industrial

Engineering, 2023, pp. 129–135.

[48] S. Khanna, “Identifying Privacy

Vulnerabilities in Key Stages of

Computer Vision, Natural Language

 EmErging TrEnds in machinE inTElligEncE and Big daTa

Code Smells in Software Development Causes, Consequences, and Detection Strategies
[50]

Processing, and Voice Processing

Systems,” International Journal of

Business Intelligence and Big Data

Analytics, vol. 4, no. 1, pp. 1–11, 2021.

[49] R. S. S. Dittakavi, “An Extensive

Exploration of Techniques for Resource

and Cost Management in Contemporary

Cloud Computing Environments,”

Applied Research in Artificial

Intelligence and Cloud Computing, vol.

4, no. 1, pp. 45–61, Feb. 2021.

[50] S. Khanna and S. Srivastava, “AI

Governance in Healthcare:

Explainability Standards, Safety

Protocols, and Human-AI Interactions

Dynamics in Contemporary Medical AI

Systems,” Empirical Quests for

Management Essences, vol. 1, no. 1, pp.

130–143, 2021.

[51] M. I. Azeem, F. Palomba, L. Shi, and Q.

Wang, “Machine learning techniques for

code smell detection: A systematic

literature review and meta-analysis,”

Information and Software Technology,

vol. 108, pp. 115–138, Apr. 2019.

[52] H. Liu, J. Jin, Z. Xu, Y. Bu, Y. Zou, and

L. Zhang, “Deep learning based code

smell detection,” IEEE Trans. Software

Eng., pp. 1–1, 2021.

[53] F. A. Fontana, M. Zanoni, A. Marino,

and M. V. Mäntylä, “Code Smell

Detection: Towards a Machine

Learning-Based Approach,” in 2013

IEEE International Conference on

Software Maintenance, 2013, pp. 396–

399.

