
Advances in Urban Resilience and Sustainable City Design
2024 (https://orientreview.com/index.php/aurscd-journal)

Reinforcement Learning-based Approaches for Improving Safety and Trust in
Robot-to-Robot and Human-Robot Interaction

Mahmoud Abouelyazid 1

Abstract

The increasing deployment of robotic systems in various domains has emphasized the need for ensuring
safety and trust in robot-to-robot and human-robot interaction. Existing approaches often prioritize perfor-
mance metrics without explicitly addressing safety constraints or trust-building behaviors. The transfer of
learned policies from simulation to real-world environments remains a challenge due to the complexities
and uncertainties of real-world scenarios. This study aims to address the gap in the literature by proposing
a framework that integrates multiple RL techniques to enhance safety and trust in robotic systems. The pro-
posed framework contains several key components. First, constrained RL approaches, such as Constrained
Policy Optimization or Safe Exploration via Constrained Policy Optimization, are employed to incorporate
safety constraints into the learning process, ensuring that the learned policies adhere to specified safety re-
quirements. Second, a reward shaping mechanism is designed to include metrics for quantifying safety and
trust, enabling the learning of behaviors that prioritize safety and enhance trust in human-robot interaction.
Third, active learning techniques are integrated with RL to enable human-in-the-loop learning, allowing the
robot to efficiently learn from human feedback and demonstrations. Fourth, domain randomization tech-
niques are applied to improve the sim-to-real transfer of learned policies, making the policies more robust
and adaptable to real-world scenarios. Finally, the proposed framework is extended to multi-robot sys-
tems by employing multi-agent RL algorithms that enable safe and efficient coordination through learned
communication protocols. The study provides a theoretical and algorithmic foundations for the proposed
framework, discussing the benefits and challenges of integrating these RL techniques for safety and trust in
robotics applications. This research aims to contribute to the advancement of RL techniques for ensuring
safety and trust in robotic systems. The proposed framework can be applied as a conceptual foundation
for future research and development of more reliable, trustworthy, and human-friendly robotic systems. Al-
though experimental validation for the study is beyond the scope of this study, it highlights the possibility
of integrating RL techniques to enhance safety and trust in robot-to-robot and human-robot interaction for
further empirical investigations and practical applications.

1. Introduction

Robots are experiencing rapid growth in sophisti-
cation and diversity. While autonomous vehicles,
drones, and automated vacuum cleaners are widely
recognized, there are many lesser-known robots,
such as those used in laboratories [1], industrial set-
tings [2], ocean and space exploration, search-and-
rescue operations, and even surgery. The advance-
ment of robotics is making various aspects of life
easier, cleaner, healthier, and more prosperous [3].

Robots are not a monolithic entity but rather a

1Purdue University

combination of various technologies that are pro-
gressing at different rates. The development of
robotics relies on advancements in several key ar-
eas, including sensors, control systems, actuators,
and materials science. Laser systems with en-
hanced range and angle resolution are among the
sensor technologies that are driving progress in
robotics. These advanced sensors enable robots
to perceive and interact with their environment more
accurately and efficiently [4].

Control systems, such as cloud-based robots
and predictive control, are another component of
robotics. These systems allow for more responsive

Figure 1: Application of robot in various sectors

robot behavior, enabling them to adapt to changing
conditions and make decisions based on real-time
data. Actuators, like dexterous grippers, are also es-
sential for enabling robots to physically interact with
their surroundings and perform tasks with greater
precision and flexibility. Additionally, advancements
in materials science are helping robots to become
more energy-efficient by allowing them to harvest
energy from their environment. As these various
technologies continue to evolve and converge, the
capabilities of robots will likely expand, leading to
new applications and opportunities across a wide
range of industries [2].

Safety is a fundamental human need and an in-
dispensable aspect of our daily existence [5]. Con-
sequently, ensuring the physical safety of people
should be the top priority in the creation of any
robotic system intended for human interaction. Rec-
ognizing this, there is already a significant body of
research dedicated to studying and enhancing the
safety of human-robot interaction (HRI). As we push
the boundaries of what robotic assistants can do, we
must never lose sight of our responsibility to make
them safe and deserving of the trust we place in
them. Only by treating safety as an essential de-
sign requirement, rather than an optional feature or
afterthought, can we hope to create robotic helpers
that truly benefit humanity without putting us at risk.

To fully realize the many benefits that autonomous
robotic assistants offer, it is necessary to accept
them acting in close proximity to people, sharing
space, e.g., at work or at home, and even jointly
manipulating objects. From personal carrier robots
to robotic co-workers in a flexible manufacturing as-
sembly line, the required physical closeness adds

a new dimension of risk and potential dangers for
users. Traditionally, there was a clear spatial and
physical separation between people and robots, as
reflected by current standards such as ISO 13849-1
(Safety of machinery – Safety-related parts of con-
trol systems). Safety barriers were put in place
to prevent robots from making contact with peo-
ple. The most prominent examples for the safety-by-
separation paradigm can be found in conventional
car production plants. Currently, robots in an indus-
trial setting need to reduce their operational speed
and may even need to fully stop in close proximity
of people, as suggested by the technical specifica-
tion ISO/TS 15066:2016 (Robots and robotic devices
– Collaborative robots) and required by the stan-
dard ISO 13482:2014 (Robots and robotic devices
– Safety requirements for personal care robots).

The development of new safety strategies that
allow for close collaboration between humans and
robots while prioritizing user safety is essential.
This requires a shift from the traditional safety-by-
separation approach to a more nuanced, context-
aware safety framework that leverages advanced
sensors, intelligent control systems, and adaptive
behaviors to ensure safe and efficient human-robot
interaction in various settings. The implementation
of such strategies will enable the realization of the
full potential of autonomous robotic assistants while
maintaining a high level of safety for users

2. Robot-to-Robot Interaction

The deployment of interconnected robots, as op-
posed to individual robots operating independently
is enabling effective coordination among the robots.
This coordination allows for efficient distribution of
tasks, comprehensive spatial coverage, and spe-
cialization based on the capabilities of each robot.
A growing range of applications, such as logis-
tics, resource distribution, transportation systems,
manufacturing, and agriculture, rely on these net-
worked robot systems. The success of these ap-
plications hinges on the seamless orchestration of
robots across time and space, enabling them to col-
laborate towards common high-level objectives, pre-
vent conflicts in shared environments, and exchange
information for distributed computing purposes. Ef-
fective communication and the mutual sharing of
state and control information are crucial for facilitat-
ing these interactions.

Tasks can be accomplished more efficiently and in
a shorter timeframe by utilizing multiple robots con-
currently. The use of heterogeneous robots with di-

2

verse capabilities allows for cost-effective solutions,
as each robot can be assigned specific components
of the task that align with its particular strengths.
This approach is advantageous when dealing with
tasks that are inherently distributed over a wide area,
as multiple robots can effectively cover the entire re-
gion. The presence of multiple robots capable of per-
forming similar processes provides fault tolerance,
ensuring that if any individual robot fails, the others
can compensate for the loss and maintain the overall
functionality of the system.

Several major architectures have been identified
in the field of Multi-Robot Systems (MRS) that sig-
nificantly impact the robustness [6], reliability, and
scalability of the system, In Figure 2. These archi-
tectures are determined by the strategy employed
to make decisions, manage interactions between
robots, and generate group behavior within the team.

The centralized approach is one such architecture,
where a single point of control manages the behavior
of all the robots in the team. This architecture suffers
from the single point of failure problem, which can re-
duce its reliability. Scalability is also diminished be-
cause the central controller must constantly monitor
the state of all team members, leading to numerous
message exchanges in addition to the control mes-
sages sent back to individual robots to control their
actions [7].

The hierarchical approach organizes robots in a
command and control hierarchy similar to that in the
military. A robot controls a group of other robots, and
each of those robots, in turn, controls another group
of robots. This pattern can continue for several lev-
els down the hierarchy, depending on the size of the
network. This approach is highly scalable and can
be appropriate for applications with a large number
of robots. However, it has reduced reliability due to
the considerable vulnerability in handling failures of
robots at higher levels in the hierarchy [8].

The decentralized architecture is the most com-
mon category for MRS systems. Robots take ac-
tions based on their own local view, following cer-
tain strategic guidelines and goals for the team. This
model is characterized by its robustness and abil-
ity to adjust to failures since no centralized control
is used. Maintaining synchronization and coherency
among the robots can be challenging. Coordinating
actions when mission objectives change can also be
a complex task.

The hybrid approach combines local decentralized

Figure 2: Types of Multi-Robot Systems (MRS) Architecture

control, which provides robustness, with hierarchical
control to achieve global synchronization and coor-
dination of actions, goals, and tasks. This hybrid
strategy is employed in many MRS systems that re-
quire scalability due to the large size of the network,
as well as the ability to make quick decisions at the
local level to achieve better performance and faster
reactions to local events and failures.

3. Human-Robot Interaction

Human-Robot Interaction (HRI) is a field of study
dedicated to understanding, designing, and evaluat-
ing robotic systems for use by or with humans. Inter-
action requires communication between robots and
humans. Communication between a human and a
robot may take several forms, largely influenced by
whether the human and the robot are in close prox-
imity to each other or not. Communication and inter-
action can be separated into two general categories:
Remote interaction – The human and the robot are
not co-located and are separated spatially or even
temporally. For example, the Mars Rovers are sepa-
rated from earth both in space and time. Proximate
interactions – The humans and the robots are co-
located. For example, service robots may be in the
same room as humans.

Modalities of Human-Robot Interaction

3.1 Vision Systems in Robots

Visual perception provides the most important infor-
mation to robots, allowing them to achieve success-
ful interaction with human partners. This information
can be used in various tasks, such as navigation,
obstacle avoidance, detection, understanding, and

3

manipulation of objects, and assigning meanings to
a visual configuration of a scene. The vision has
been used for estimating the 3D position and orien-
tation of a user in an environment, estimating dis-
tances between a robot and users, tracking human
targets and obtaining their poses, and understanding
human behavior to contribute to the cohabitation be-
tween assistive robots and humans. The vision has
also been used in various other applications, such
as recognizing patterns and figures in exercises in a
teaching assistance context in a high school, detect-
ing and classifying waste material as a child would
do, and detecting people entering a building for pos-
sible interaction. Moreover, vision has been used
for medication sorting, taking into account pill types
and numbers, sign recognition in a sign tutoring task
with deaf or hard of hearing children, and as part
of a platform used for cognitive stimulation in elderly
users with mild cognitive impairments.

3.2 Conversational Systems in Robots

Some applications of social robotics involve robots
taking vocal commands without generating a vocal
reply. However, interactions can be made richer
when the robot can engage in conversations. A typ-
ical social robot with autonomous conversation abil-
ity must have the capacity to acquire sound signals,
process them to recognize speech, recognize the
whole sequence of words pronounced by the human
interlocutor, formulate an appropriate reply, synthe-
size the sound signal corresponding to the reply,
and emit this signal using a loudspeaker. The core
component of this ability is the recognition of word
sequences and the generation of reply sequences.
This can rely on a learning stage where the sys-
tem acquires the experience of answering word se-
quences by observing a certain number of conversa-
tions that are mainly between humans. Techniques
used in this area involve word and character embed-
dings, and learning through recurrent neural network
(RNN) architectures, long short-term memory net-
works (LSTM), and gated recurrent units (GRU). Not
all social robotic systems with conversational capaci-
ties have the same levels of complexity, as some use
limited vocabularies in their verbal dialogues.

3.3 Expressions and Gestures

A social robot requires more capacities to increase
engagement and realism in the interaction with a hu-
man, aside from the ability to process and gener-
ate sequences of words. This can be done through
speech-accompanying gestures and facial expres-
sions. Facial expression has an important role in

communication between humans because it is rich
in information, together with gestures and sound.
There are six main emotions associated with distinc-
tive facial expressions. Different examples can be
found for applications of gestures and expressions
in social robotics. Gestures have been combined
with verbal dialogue and screen display for health
data acquisition in hospitals with Pepper. A robot
with the ability to display facial expressions was used
in studies related to storytelling robots, focusing on
the roles of emotional facial display, contextual head
movements, and voice acting.

4. Literature Gap

While significant progress has been made in apply-
ing reinforcement learning (RL) to robotics, there is
still a need for further research on ensuring safety
and trust in robot-to-robot and human-robot interac-
tion. Existing RL approaches often focus on optimiz-
ing performance metrics without explicitly address-
ing safety constraints or trust-building behaviors.
Moreover, the transfer of learned policies from sim-
ulation to real-world environments remains a chal-
lenge, as simulations may not capture all the com-
plexities and uncertainties of real-world scenarios.
There is a gap in the literature regarding the develop-
ment of RL techniques that can effectively incorpo-
rate safety and trust metrics, enable human-in-the-
loop learning, and ensure robust sim-to-real transfer
[9], [10], [11], [12].

5. Contribution of the Study

This study aims to address the identified literature
gap by proposing a framework that integrates var-
ious RL techniques to improve safety and trust in
robot-to-robot and human-robot interaction. The
main contributions of this study are as follows: 1.
Proposing a constrained RL approach that incorpo-
rates safety constraints into the learning process, en-
suring that the learned policies adhere to specified
safety requirements. 2. Designing a reward shap-
ing mechanism that includes metrics for quantifying
safety and trust, enabling the learning of behaviors
that prioritize safety and enhance trust in human-
robot interaction. 3. Integrating active learning tech-
niques with RL to enable human-in-the-loop learn-
ing, allowing the robot to efficiently learn from hu-
man feedback and demonstrations. 4. Applying do-
main randomization techniques to improve the sim-
to-real transfer of learned policies, making the poli-
cies more robust and adaptable to real-world sce-
narios. 5. Extending the proposed framework to
multi-robot systems by employing multi-agent RL al-

4

gorithms that enable safe and efficient coordination
through learned communication protocols. 6. Pro-
viding a theoretical foundation and algorithmic in-
sights for the proposed framework, discussing the
potential benefits and challenges of integrating these
RL techniques for safety and trust in robotics ap-
plications. The proposed framework can be used
for future research and development of more reli-
able, trustworthy, and human-friendly robotic sys-
tems. While the study does not include experimental
validation, it provides a conceptual foundation and
highlights the potential of integrating RL techniques
to enhance safety and trust in robot-to-robot and
human-robot interaction.

6. Reinforcement learning (RL) to improve
safety and trust in robot-to-robot and human-
robot interaction

6.1 Safe exploration using constrained RL

Constrained Markov Decision Processes:

We denote by P (S) the set of probability distribu-
tions on a set S. A Markov Decision Process is de-
fined as a tuple (S,A, T,R, s0), where S is a set of
states, A is a set of actions, T : S × A → P (S)
is a transition probability function, R : S × A →
[0, Rmax] is a reward function, and s0 is the ini-
tial state. For simplicity, we assume a determinis-
tic reward function and initial state, but our results
can be generalized. A Constrained Markov Deci-
sion Process (CMDP) is an MDP with additional con-
straints that must be satisfied, thereby restricting the
set of allowable policies for the agent. Formally, a
CMDP is defined as a tuple (S,A, T,R, s0, C, Cmax),
where C : S → [0, Cmax] is the cost function and
Cmax ∈ R≥0 is the maximum allowed cumulative
cost. Note that the cost is only a function of states
rather than state-action pairs [13]. We consider a
finite time horizon H after which the episode termi-
nates. The set of feasible policies that satisfy the
CMDP is a subset of stationary policies: ΠC :=
π : S → P (A)|E[

∑H
t=0 C(st)|s0, π] ≤ Cmax

The expected sum of rewards following a policy
π from an initial state s is given by the value func-
tion V π(s) = E[

∑H
t=0 R(st, at)|π, s0 = s]. Similarly,

the expected sum of costs is given by the cost value
function V π

C (s) = E[
∑H

t=0 C(st)|π, s0 = s]. The opti-
mization problem in the CMDP is to find the feasible
policy that maximizes expected returns from the ini-
tial state s0, i.e., π∗C = argmaxπ ∈ ΠCV

π(s0) An
important point to note about CMDPs is that the cost
function depends on immediate states, but the con-

straint is cumulative and depends on the entire tra-
jectory, making the optimization problem much more
challenging [14].

In the case of MDPs, where a model of the en-
vironment is not known or is not easily obtained,
it is still possible for the agent to find the optimal
policy using Temporal Difference (TD) methods. In
general, these methods update the estimates of the
value functions via bootstraps of previous estimates
on sampled transitions. In the on-policy setting, we
alternate between estimating the state-action value
function Qπ for a given π and updating the policy to
be greedy with respect to the value function.

Constrained Markov Decision Processes
(CMDPs) provide a powerful framework for for-
mulating Reinforcement Learning (RL) problems
with safety constraints. Through incorporating
constraints on the expected cumulative cost of
unsafe actions, CMDPs enable the development
of algorithms that ensure the robot explores its
environment while satisfying safety requirements.

In the context of CMDPs, the objective is to find a
policy π∗C that maximizes the expected return while
ensuring that the expected cumulative cost, V π

C (s0),
remains below a specified threshold Cmax. This
constrained optimization problem can be formally ex-
pressed as: π∗C = argmaxπ ∈ ΠCV

π(s0), subject
to V π

C (s0) ≤ Cmax where ΠC is the set of feasible
policies that satisfy the cost constraint [15].

Algorithms like Constrained Policy Optimization
(CPO) and Safe Exploration via Constrained Pol-
icy Optimization (SCPO) have been developed to
tackle this constrained optimization problem effi-
ciently. These algorithms optimize the policy within
the constrained solution space, guaranteeing that
the learned behavior adheres to the specified safety
constraints. CPO is an actor-critic method that ex-
tends the Trust Region Policy Optimization (TRPO)
algorithm to handle safety constraints [16]. It ap-
proximates the constrained optimization problem us-
ing a surrogate objective and a surrogate constraint,
which are based on the first-order approximations of
the value function and the cost value function, re-
spectively.

SCPO, on the other hand, builds upon CPO and
incorporates a safe exploration mechanism. It in-
troduces a notion of a safe set, which is a subset
of the state space where the agent can safely ex-
plore without violating the constraints. SCPO main-
tains an estimate of the safe set and adapts the

5

exploration strategy accordingly. Inside the esti-
mated safe set, the agent explores using a stan-
dard RL algorithm like Proximal Policy Optimization
(PPO) [16]. Outside the safe set, the agent follows
a safe backup policy that minimizes the risk of con-
straint violation. Both CPO and SCPO have theo-
retical guarantees on the satisfaction of safety con-
straints during training. They ensure that the ex-
pected cumulative cost of the learned policy remains
below the specified threshold, Cmax, with high prob-
ability. This is achieved by carefully balancing the
exploration-exploitation trade-off and adjusting the
policy updates based on the estimated safety con-
straints. CMDPs provide a principled way to incorpo-
rate safety constraints into the RL framework. Algo-
rithms like CPO and SCPO leverage the CMDP for-
mulation to optimize policies that maximize expected
returns while strictly adhering to the specified safety
constraints. By employing these algorithms, robots
can explore their environment and learn effective be-
haviors while ensuring that they operate within the
defined safety boundaries.

Algorithm 1 Safe Policy Iteration Algorithm
Input: π0, Cmax, απ, αV , αQ, γ, β
Output: Optimal safe policy π∗

Initialize Vx ← 0, Vu ← 0, Qx ← 0, Qu ← 0, S ←
{s0}
for iteration k = 0, 1, 2, ... do

• Collect trajectories using πk

• Update value functions using collected data

• Solve constrained optimization problem to up-
date policy: π′ ← argmaxπ E[

∑
t r(st, at)|π],

subject to E[
∑

t c(st)|π] ≤ Cmax

• Update policy: πk+1 ← (1− απ) · πk + απ · π′

• Expand safe set: S′ ← {s ∈ S|Vu(s) ≤ β ·Cmax}

• for s ∈ S′ do

– for a ∈ A do

* s′ ← env.step(s, a)

* if Vu(s
′) ≤ β · Cmax then S ← S ∪ {s′}

end for
Return optimal safe policy π∗ (last policy πk)

6.2 Reward shaping with safety and trust metrics

A reward design problem is defined as a tuple P =
⟨r∗, M̃ , R̃, π(·|r̃, M̃)⟩, where: • r∗ is the true reward

function. • M̃ is a world model. • R̃ is a set of proxy
reward functions. • π(·|r̃, M̃) is an agent model that
defines a distribution on trajectories given a (proxy)
reward function and a world model. The designer
believes that an agent, represented by the policy
π(·|r̃, M̃), will be deployed in M̃ . She must spec-
ify a proxy reward function r̃ ∈ R̃ for the agent. Her
goal is to specify r̃ so that π(·|r̃, M̃) obtains high re-
ward according to the true reward function r. We
let w̃ represent weights for the proxy reward function
and w represent weights for the true reward function.
In this work, our motivation is that system designers
are fallible, so we should not expect that they per-
fectly solve the reward design problem. Instead, we
consider the case where the system designer is ap-
proximately optimal at solving a known RDP, which
is distinct from the MDP that the robot currently finds
itself in. By inverting the reward design process to in-
fer (a distribution on) the true reward function r∗, the
robot can understand where its reward evaluations
have high variance and plan to avoid those states.
We refer to this inference problem as the inverse
reward design problem: Definition 3. (Inverse Re-
ward Design) The inverse reward design (IRD) [17]
problem is defined by a tuple ⟨R, M̃, R̃, π(·|r̃, M̃), r̃⟩,
where: • R is a space of possible reward functions.
• ⟨−, M̃ , R̃, π(·|r̃, M̃)⟩ partially specifies an RDP P ,
with an unobserved reward function r∗ ∈ R. • r̃ ∈ R̃
is the observed proxy reward that is an (approxi-
mate) solution to P . In solving an IRD problem, the
goal is to recover r. We will explore Bayesian ap-
proaches to IRD, so we will assume a prior distribu-
tion on r and infer a posterior distribution on r given
r̃: P (r|r̃, M̃).

Designing a suitable reward function is crucial for
ensuring that a reinforcement learning (RL) agent
learns behaviors that are not only optimal for the task
at hand but also safe and trustworthy. In the context
of human-robot interaction (HRI), the reward func-
tion should incorporate metrics that quantify safety
and trust, encouraging the robot to prioritize these
aspects while learning its policy. One approach to
incorporating safety into the reward function is to in-
clude penalties for unsafe actions. For example, if
the robot is navigating in a shared environment with
humans, the reward function can assign a large neg-
ative reward for collisions or near-misses with hu-
mans or objects. This penalty can be proportional
to the severity of the collision or the proximity to the
human, encouraging the robot to maintain a safe dis-
tance and avoid dangerous situations. Similarly, if
the robot is assisting humans in a task that requires
physical interaction, the reward function can penalize

6

actions that apply excessive force or cause discom-
fort to the human. In addition to safety, trust is a key
factor in HRI. To enhance trust, the reward function
can include rewards for behaviors that are transpar-
ent, predictable, and aligned with human expecta-
tions. For instance, the robot can be rewarded for
providing clear and timely communication about its
intentions, current state, and any potential risks or
uncertainties. This can be achieved by incorporating
metrics that measure the quality and frequency of
the robot’s communication, such as the information
gain or the human’s understanding of the robot’s ac-
tions. Moreover, the robot can be rewarded for exe-
cuting movements that are smooth, legible, and pre-
dictable, as sudden or erratic motions can be unset-
tling and diminish trust. To ensure that the learned
behavior aligns with human preferences and values,
techniques like Inverse Reward Design (IRD) can
be employed. IRD is a framework that learns the
reward function from human demonstrations, rather
than relying on a manually specified reward signal.
In this approach, the human expert demonstrates
the desired behavior in various scenarios, and the
algorithm infers the underlying reward function that
explains the observed demonstrations. By learning
from human examples, IRD can capture the implicit
priorities and trade-offs that humans make when bal-
ancing safety, trust, and task performance. For-
mally, IRD can be formulated as an inverse reinforce-
ment learning (IRL) problem. Given a set of human
demonstrations D = (x0, a0), (x1, a1), . . . , (xT , aT),
where xt and at denote the state and action at time
step t, the objective is to find a reward function
Rθ(x, a) parameterized by θ that maximizes the like-
lihood of the demonstrations:

max
θ

∏
(x,a)∈D

P (a|x;Rθ)

where P (a|x;Rθ) is the probability of taking action
a in state x under the optimal policy derived from
the reward function Rθ. Once the reward function is
learned, it can be used to train an RL agent that ex-
hibits safe and trustworthy behavior. The agent’s pol-
icy can be optimized using standard RL algorithms,
such as Q-learning or policy gradient methods, with
the learned reward function guiding the exploration
and exploitation process. designing a reward func-
tion that incorporates safety and trust metrics, along
with employing techniques like Inverse Reward De-
sign, can help ensure that the learned behavior of
an RL agent aligns with human preferences and val-
ues. By prioritizing safety and trust in the learning
process, robots can be trained to operate in a man-
ner that is not only efficient but also acceptable and

comfortable for humans in shared environments.

Algorithm 2 Interactive Learning with Safety and
Trust Monitoring
for each evaluation episode:

• x← x0

• for t = 0 to T − 1 do:

– a← argmaxa π(a|x)
– x′ ← Execute(a)

– MonitorSafetyTrust(x, a)

– x← x′

• feedback ← GetHumanFeedback()

if not SafeAndTrusted(feedback) then

• Rθ ← UpdateReward(Rθ, feedback)

• Rθ ← InverseRewardDesign(D,Rθ, X,A, α, β,num iter)

• π ← InitializePolicy()

6.3 Human-in-the-loop learning with active learn-
ing

Active Preference Learning (APL) Active Prefer-
ence Learning (APL) is a subfield of machine learn-
ing that focuses on actively querying users to learn
their preferences or reward functions [18]. The goal
is to efficiently gather informative feedback and con-
verge towards the true preferences with minimal in-
teractions. Mathematically, let X be the set of pos-
sible outcomes or items, and R be the set of pos-
sible reward functions mapping from X to real num-
bers. APL maintains a belief distribution p(r) over
the reward functions and updates it based on user
feedback using Bayesian inference. At each itera-
tion t, the learner selects a query qt to elicit feed-
back ft from the user, which is then used to up-
date the belief distribution: p(r|f1, . . . , ft) ∝ p(ft|r) ·
p(r|f1, . . . , ft−1). The query selection strategy aims
to maximize information gain, such as through un-
certainty sampling or expected improvement. APL
employs various feedback mechanisms, including
pairwise comparisons, where the user provides rela-
tive preferences between pairs of outcomes, and rat-
ings or scores assigned to individual outcomes. The
learned reward function can be used to make rec-
ommendations, optimize decision-making, or guide
interactive systems. Technical challenges in APL
include handling noisy and inconsistent feedback,
scaling to large outcome spaces, and ensuring the

7

safety and robustness of the learned preferences.
Researchers have proposed different approaches
to address these challenges, such as using prob-
abilistic models, regularization techniques, and ac-
tive learning algorithms that balance exploration and
exploitation. APL has found applications in diverse
domains, including personalized recommendations,
robotic decision-making, and interactive design opti-
mization. Active Reward Learning (ARL) Active
Reward Learning is a machine learning paradigm
that aims to learn a reward function through active
interaction with an environment or user [19]. Un-
like traditional reinforcement learning, where the re-
ward function is assumed to be known, ARL seeks
to estimate the underlying reward function by ac-
tively querying the user or environment for feedback.
Mathematically, let S be the set of states, A be the
set of actions, and R be the set of possible re-
ward functions mapping from state-action pairs to
real numbers. The goal of ARL is to learn the true
reward function r∗ ∈ R that accurately captures the
desired behavior or preferences. ARL maintains a
belief distribution p(r) over the reward functions and
updates it based on the collected feedback using
Bayesian inference. At each step t, the learner se-
lects an action at based on its current belief and the
observed state st, and receives feedback ft from the
user or environment. The feedback is used to update
the belief distribution: p(r|f1, . . . , ft) ∝ p(ft|r, st, at) ·
p(r|f1, . . . , ft−1). The action selection strategy bal-
ances exploration and exploitation to gather informa-
tive feedback efficiently. ARL employs various tech-
niques to learn the reward function based on the
collected feedback. One approach is Inverse Rein-
forcement Learning (IRL), where the goal is to in-
fer the reward function that explains the observed
behavior or demonstrations. IRL methods, such as
maximum entropy IRL or Bayesian IRL, estimate the
reward function by finding the one that maximizes
the likelihood of the observed data under a model of
rational behavior. Another approach is Preference-
based Reinforcement Learning, where the learner
directly learns a policy that maximizes the user’s
preferences without explicitly estimating the reward
function. This can be achieved through methods
like preference-based policy search or preference-
based value iteration. ARL faces technical chal-
lenges, such as dealing with noisy and inconsistent
feedback, handling large state and action spaces,
and ensuring the safety and stability of the learned
reward function. Researchers have proposed vari-
ous techniques to address these challenges, includ-
ing robust learning algorithms, active query selec-
tion strategies, and safe exploration methods. ARL

has been applied in domains such as robotics, game
AI, and personalized assistants, enabling systems to
adapt and align their behavior with user preferences
or specified objectives. Active learning techniques
can be seamlessly integrated with Reinforcement
Learning (RL) to facilitate human-in-the-loop learn-
ing, enabling robots to actively seek human feedback
or demonstrations in situations of uncertainty.

In this scenario, let consider a Markov Decision
Process (MDP) defined by the tuple (S,A, T ,R, γ),
where S is the state space, A is the action space,
T is the transition function, R is the reward function,
and γ is the discount factor. The goal is to learn an
optimal policy π∗ that maximizes the expected cumu-
lative reward. When integrating active learning with
RL, the robot maintains a belief distribution p(θ) over
the parameters θ of the reward function Rθ or the
optimal policy πθ. At each timestep t, the robot ob-
serves the current state st and selects an action at
based on its current belief. However, in situations of
high uncertainty, the robot can query the human for
feedback or a demonstration. APL and ARL provide
frameworks for efficiently querying the human and
updating the belief distribution based on the received
feedback. In APL, the robot presents the human with
a set of candidate actions or trajectories and asks
for their preference. The human’s feedback is then
used to update the belief distribution using Bayesian
inference: p(θ|Dt+1) ∝ p(Dt+1|θ) · p(θ|Dt) where Dt

represents the accumulated feedback up to timestep
t, and Dt+1 includes the new feedback. Similarly, in
ARL, the robot queries the human for a reward sig-
nal or a demonstration in states where it is uncertain
about the optimal action. The obtained feedback is
used to update the belief distribution over the reward
function parameters: p(θ|Dt+1) ∝ p(Dt+1|θ) ·p(θ|Dt)
Bayesian optimization can be employed to model
the uncertainty in the human feedback and guide
the query selection process. The robot maintains
a Gaussian Process (GP) model of the expected
feedback quality for each state-action pair. The GP
model provides a mean estimate and a variance es-
timate for the feedback quality. The robot can select
queries that maximize an acquisition function, such
as Upper Confidence Bound (UCB) or Expected Im-
provement (EI), which balances exploration and ex-
ploitation. For example, using UCB, the robot se-
lects the state-action pair (st, at) that maximizes:
UCB(st, at) = µ(st, at) + κ · σ(st, at) where µ(st, at)
and σ(st, at) are the mean and standard deviation of
the GP model for the state-action pair (st, at), and
κ is a hyperparameter that controls the exploration-
exploitation trade-off.

8

Integrating active learning techniques with RL en-
ables robots to leverage human expertise efficiently
and adapt their behavior based on human prefer-
ences and demonstrations. This human-in-the-loop
learning paradigm enhances the safety, interpretabil-
ity, and trustworthiness of robot learning, making
it suitable for real-world applications where human
oversight and collaboration are essential

6.4 Sim-to-real transfer with domain randomization

Domain Adversarial Neural Networks (DANN) is a
deep learning approach that aims to learn domain-
invariant features for improved domain adaptation
[20]. The architecture of DANN consists of three
main components: a feature extractor Gf (x), a la-
bel predictor Gy(f), and a domain classifier Gd(f).
The feature extractor is trained to generate a fea-
ture representation f that is both discriminative for
the main learning task and invariant to the domain
shift. This is achieved by simultaneously optimiz-
ing two objectives: minimizing the loss of the label
predictor Ly(Gy(Gf (x)), y) and maximizing the loss
of the domain classifier Ld(Gd(Gf (x)), d). The do-
main classifier attempts to distinguish between the
source and target domains based on the extracted
features, while the feature extractor tries to confuse
the domain classifier by generating domain-invariant
features. The overall objective function of DANN is
expressed as: L(Gf , Gy, Gd) = Ly(Gy(Gf (x)), y) −
λLd(Gd(Gf (x)), d), where λ is a hyperparameter
that controls the trade-off between the two objec-
tives. By training the network in an adversarial man-
ner, DANN effectively aligns the feature distributions
of the source and target domains, enabling better
generalization to the target domain.

Randomized Adversarial Imitation Learning
(RAIL) combines ideas from imitation learning and
adversarial training to learn robust policies from
expert demonstrations [21]. The main objective of
RAIL is to learn a policy πθ(a|s) that can accurately
imitate the expert’s behavior while being resilient to
variations in the environment dynamics. The frame-
work introduces a randomized adversary ρϕ(τ) that
perturbs the trajectories τ generated by the learned
policy. The adversary is trained to maximize the
discrepancy between the state-action distribution in-
duced by the perturbed trajectories and the expert’s
distribution, denoted as DJS(ρϕ(τ)||πE), where DJS

is the Jensen-Shannon divergence. Simultaneously,
the policy is trained to minimize this discrepancy, ef-
fectively learning to generate trajectories that closely
match the expert’s distribution even under adversar-
ial perturbations. The training objective for RAIL can

Algorithm 3 Interactive Learning with Human Feed-
back
Input: Initial belief distribution p(θ), Gaussian Pro-
cess (GP) model, hyperparameter κ
1. Initialize:

• Initialize belief distribution p(θ) over parameters
θ of Rθ or πθ.

• Initialize GP model for uncertainty in human
feedback.

• Set hyperparameters, e.g., exploration-
exploitation trade-off parameter κ.

2. For each episode:

• Initialize starting state s0.

• For each timestep t:

– Observe current state st.

– If uncertainty in (st, at) is high:

* Select query (st, at) maximizing
acquisition function, e.g., UCB:
UCB(st, at) = µ(st, at) + κ · σ(st, at).

* Query human for feedback or demon-
stration for (st, at).

* Receive human feedback Dt+1.

* Update belief distribution p(θ) us-
ing Bayesian inference: p(θ|Dt+1) ∝
p(Dt+1|θ) · p(θ|Dt).

* Update GP model with new feedback.

– Else:

* Select action at based on current be-
lief distribution p(θ) and policy πθ.

– Execute selected action at, observe next
state st+1 and reward rt+1.

– Update policy πθ and belief distribution p(θ)
based on observed transition and reward.

3. Repeat step 2 until convergence or maximum
episodes reached.
4. Return learned policy πθ and updated belief dis-
tribution p(θ).

9

be expressed as a minimax optimization problem:
minθ maxϕ Eτ ∼ ρϕ(τ)[DJS(ρϕ(τ)||πE)] − λH(ρϕ),
where H(ρϕ) is an entropy regularization term
that encourages diversity in the adversarial per-
turbations, and λ is a hyperparameter controlling
the strength of the regularization. By exposing
the learned policy to a wide range of perturbed
environments during training, RAIL enhances its
robustness and generalization capabilities, making
it more suitable for real-world deployment.

Domain randomization is a technique for bridging
the sim-to-real gap in reinforcement learning (RL)
by training policies in a variety of simulated environ-
ments with randomized properties [22]. The goal is
to learn a policy that is robust and transferable to the
real world by exposing it to a wide range of variations
during training. This can be achieved by randomiz-
ing various aspects of the simulation, such as:

• 1. Lighting conditions: Varying the intensity, di-
rection, and color of the lighting in the simulated
environment helps the policy learn to handle dif-
ferent illumination scenarios.

• 2. Object properties: Randomizing the shape,
size, mass, friction, and texture of objects in the
environment allows the policy to generalize to a
broader range of object interactions.

• 3. Sensor noise: Introducing random noise to
sensor readings, such as camera images or
depth sensors, makes the policy more resilient
to imperfect sensor data in the real world.

To further enhance the sim-to-real transfer, ad-
vanced techniques like Domain Adversarial Neural
Networks (DANN) can be employed. DANN aims
to learn domain-invariant features by simultaneously
training a feature extractor, a label predictor, and a
domain classifier. The feature extractor is trained
to generate representations that are both informa-
tive for the task at hand and invariant to the domain
shift between simulation and reality. This is achieved
by minimizing the label predictor’s loss while maxi-
mizing the domain classifier’s loss, effectively align-
ing the feature distributions across domains. An-
other approach is Randomized Adversarial Imitation
Learning (RAIL), which combines imitation learning
with adversarial training. In RAIL, an adversary is in-
troduced to perturb the trajectories generated by the
learned policy in simulation. The adversary aims to
maximize the discrepancy between the state-action
distribution induced by the perturbed trajectories and

the expert’s distribution. Simultaneously, the policy
is trained to minimize this discrepancy, learning to
generate trajectories that closely match the expert’s
behavior even under adversarial perturbations. This
process enhances the policy’s robustness and gen-
eralization capabilities.

7. Conclusions

Because robotic assistants become increasingly so-
phisticated and capable, it is crucial that we prioritize
safety and trustworthiness as core design principles.
The very qualities that make these machines useful
- their intelligence and power - also give them the
potential to cause harm if not developed with the ut-
most care and consideration for the well-being of the
humans they will interact with.

Reinforcement learning (RL) can be applied to im-
prove safety and trust in robot-to-robot and human-
robot interaction. Constrained Markov Decision Pro-
cesses (CMDPs) formulate the RL problem with
safety constraints, ensuring robots explore while
satisfying safety requirements. The reward func-
tion can incorporate metrics that quantify safety and
trust, with techniques like Inverse Reward Design
(IRD) learning from human demonstrations. Active
learning enables human-in-the-loop learning, where
robots query humans for feedback in uncertain situ-
ations.

Domain randomization techniques bridge the gap
between simulation and reality, making learned poli-
cies more robust and transferable. Multi-agent RL
algorithms enable safe and efficient coordination in
multi-robot systems. Bayesian RL quantifies un-
certainty in learned policies, while Model-Based RL
learns a model of the environment for planning
and decision-making. Implementing these RL tech-
niques requires careful consideration of computa-
tional resources, real-time constraints, and safety
guarantees. Research focuses on developing scal-
able and efficient algorithms, integrating formal ver-
ification methods, and establishing standardized
benchmarks for evaluating safety and trust in robot
interaction scenarios.

The proposed framework in this study lacks exper-
imental validation, which is a significant limitation.
While the study focuses on the theoretical and algo-
rithmic foundations of integrating multiple RL tech-
niques for enhancing safety and trust in robotic sys-
tems, empirical investigations are necessary to as-
sess the practical effectiveness of the framework.
Without experimental validation, the feasibility and

10

Algorithm 4 Adversarial Domain Adaptation for
Robotic Learning (ADARL)
Input: Policy network πθ, feature extractor Gf , label
predictor Gy, domain classifier Gd (for DANN), ad-
versary ρϕ (for RAIL)
1. Initialize:

• Initialize policy network πθ, feature extractor Gf ,
label predictor Gy, domain classifier Gd (for
DANN), and adversary ρϕ (for RAIL).

2. For each iteration:

• a. Sample batch of source domain (simulated)
experiences: {(si, ai, ri, s′i)}Ni=1.

• b. Apply domain randomization to simulated
experiences by randomizing lighting conditions,
object properties, and sensor noise.

• c. If using DANN:

– i. Extract features fi = Gf (si) for each
state si in the batch.

– ii. Compute label prediction loss
Ly(Gy(fi), ai) and domain classifica-
tion loss Ld(Gd(fi), di), where di is the
domain label (0 for simulation, 1 for real).

– iii. Update parameters of Gf , Gy, and Gd

using gradient descent to minimize Ly and
maximize Ld.

• d. If using RAIL:

– i. Generate perturbed trajectories τi using
adversary ρϕ.

– ii. Compute discrepancy loss between per-
turbed trajectories and expert trajectories:
LRAIL = DJS(ρϕ(τi)||πE)−λ ·H(ρϕ), where
DJS is Jensen-Shannon divergence, H(ρϕ)
is entropy of adversary, and λ is hyperpa-
rameter.

– iii. Update parameters of policy πθ to mini-
mize LRAIL and parameters of adversary ρϕ
to maximize LRAIL.

• e. Update policy πθ using chosen reinforcement
learning algorithm (e.g., PPO, SAC) with ran-
domized simulated experiences.

3. Repeat step 2 until convergence or for specified
number of iterations.
4. Transfer learned policy πθ to real-world environ-
ment and fine-tune if necessary.

performance of the proposed approach remain un-
certain, limiting its immediate applicability to real-
world scenarios.

Moreover, the study does not provide a com-
prehensive analysis of the computational complex-
ity and scalability of the proposed framework. As
robotic systems become increasingly complex and
large-scale, implementing the integrated RL tech-
niques may pose computational challenges. The
study does not address the potential limitations in
terms of computational resources, memory require-
ments, and training time, which are crucial consider-
ations for the practical deployment of the framework
in real-world applications.

Prioritizing safety and trust in robotic systems is
undoubtedly important, but it may come at the cost
of reduced performance or efficiency in certain situ-
ations. The study does not provide a thorough anal-
ysis of how the proposed framework balances these
competing objectives and the potential implications
of prioritizing safety and trust over performance met-
rics. This lack of analysis limits the understanding
of the framework’s applicability in scenarios where
performance is a critical factor.

The proposed framework heavily relies on the suc-
cessful transfer of learned policies from simulation
to real-world environments. Although the study ac-
knowledges the challenges associated with sim-to-
real transfer, it does not provide a comprehensive
solution to address them. The complexities and un-
certainties of real-world scenarios can significantly
impact the performance and effectiveness of the
learned policies. The study does not offer a robust
methodology for ensuring a transfer of the learned
behaviors from simulation to the real world.

References

[1] J. Rosen, B. Hannaford, and R. M. Satava,
Surgical robotics: systems applications and vi-
sions. Springer Science & Business Media,
2011.

[2] J. N. Pires, Industrial robots programming:
building applications for the factories of the
future. Springer Science & Business Media,
2007.

[3] G. A. Bekey, Autonomous robots: from biolog-
ical inspiration to implementation and control.
MIT press, 2005.

11

[4] R. A. Faust, Robotics in surgery: history, cur-
rent and future applications. Nova Publishers,
2007.

[5] A. K. Saxena, M. Hassan, J. M. R. Salazar,
M. R. Amin, V. Garcı́a, and P. P. Mishra, “Cul-
tural intelligence and linguistic diversity in ar-
tificial intelligent systems: A framework,” Inter-
national Journal of Responsible Artificial Intel-
ligence, vol. 13, no. 9, pp. 38–50, 2023.

[6] R. N. Darmanin and M. K. Bugeja, “A review
on multi-robot systems categorised by appli-
cation domain,” in 2017 25th mediterranean
conference on control and automation (MED),
IEEE, 2017, pp. 701–706.

[7] R. De Nicola, L. Di Stefano, and O. In-
verso, “Toward formal models and languages
for verifiable multi-robot systems,” Frontiers in
Robotics and AI, vol. 5, p. 94, 2018.

[8] E. Tuci, M. H. Alkilabi, and O. Akanyeti, “Coop-
erative object transport in multi-robot systems:
A review of the state-of-the-art,” Frontiers in
Robotics and AI, vol. 5, p. 59, 2018.

[9] C. Liu and M. Tomizuka, “Designing the
robot behavior for safe human–robot inter-
actions,” Trends in Control and Decision-
Making for Human–Robot Collaboration Sys-
tems, pp. 241–270, 2017.

[10] S. Robla-Gómez, V. M. Becerra, J. R. Llata,
E. Gonzalez-Sarabia, C. Torre-Ferrero, and
J. Perez-Oria, “Working together: A review
on safe human-robot collaboration in in-
dustrial environments,” Ieee Access, vol. 5,
pp. 26 754–26 773, 2017.

[11] B. D. Argall, “Autonomy in rehabilitation
robotics: An intersection,” Annual Review of
Control, Robotics, and Autonomous Systems,
vol. 1, pp. 441–463, 2018.

[12] L. Pérez, Í. Rodrı́guez, N. Rodrı́guez, R. Us-
amentiaga, and D. F. Garcı́a, “Robot guid-
ance using machine vision techniques in in-
dustrial environments: A comparative review,”
Sensors, vol. 16, no. 3, p. 335, 2016.

[13] D. J. White, “Mean, variance, and probabilis-
tic criteria in finite markov decision processes:
A review,” Journal of Optimization Theory and
Applications, vol. 56, pp. 1–29, 1988.

[14] C. Amato, G. Chowdhary, A. Geramifard, N. K.
Üre, and M. J. Kochenderfer, “Decentralized
control of partially observable markov decision
processes,” in 52nd IEEE Conference on Deci-
sion and Control, IEEE, 2013, pp. 2398–2405.

[15] W. S. Lovejoy, “A survey of algorithmic meth-
ods for partially observed markov decision
processes,” Annals of Operations Research,
vol. 28, no. 1, pp. 47–65, 1991.

[16] K. Arulkumaran, M. P. Deisenroth, M.
Brundage, and A. A. Bharath, “A brief
survey of deep reinforcement learning,” arXiv
preprint arXiv:1708.05866, 2017.

[17] M. Carroll, “Overview of current ai alignment
approaches,” 2018.

[18] K. Friston, T. FitzGerald, F. Rigoli, P.
Schwartenbeck, G. Pezzulo, et al., “Ac-
tive inference and learning,” Neuroscience &
Biobehavioral Reviews, vol. 68, pp. 862–879,
2016.

[19] J. P. O’Doherty, J. Cockburn, and W. M. Pauli,
“Learning, reward, and decision making,” An-
nual review of psychology, vol. 68, pp. 73–100,
2017.

[20] J. H. Ryu, M. Irfan, A. Reyaz, et al., “A review
on sensor network issues and robotics,” Jour-
nal of Sensors, vol. 2015, 2015.

[21] M. Shin and J. Kim, “Randomized adversar-
ial imitation learning for autonomous driving,”
arXiv preprint arXiv:1905.05637, 2019.

[22] J. Garcıa and F. Fernández, “A comprehensive
survey on safe reinforcement learning,” Jour-
nal of Machine Learning Research, vol. 16,
no. 1, pp. 1437–1480, 2015.

12

	Introduction
	Robot-to-Robot Interaction
	Human-Robot Interaction
	Vision Systems in Robots
	Conversational Systems in Robots
	Expressions and Gestures

	Literature Gap
	Contribution of the Study
	Reinforcement learning (RL) to improve safety and trust in robot-to-robot and human-robot interaction
	Safe exploration using constrained RL
	Reward shaping with safety and trust metrics
	Human-in-the-loop learning with active learning
	Sim-to-real transfer with domain randomization

	Conclusions

