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aBsTracT  
The proliferation of advanced machine 

learning techniques has opened up new 

avenues for system identification and 

control. This research highlights five 

principal applications. First, system 

identification, a process traditionally 

reliant on mathematical models for 

predicting system behavior, has seen 

the incorporation of machine learning 

models trained on empirical data. 

Techniques such as neural networks, 

random forests, and support vector 

machines facilitate this. Second, 

Model Predictive Control (MPC) is 

being enhanced through machine 

learning by establishing more precise 

models and optimizing control actions. 

Reinforcement learning, a machine 

learning subtype involving 

environmental interaction, has been 

applied for deriving optimal control 

policies.  Third, fault detection and 

diagnostics have benefitted from 

machine learning's ability to identify 

system anomalies. Training models on 

standard system behavior allows them 

to recognize deviations, indicating 

potential faults. Fourth, adaptive 

control, focused on real-time control 

parameter adjustment as system 

dynamics change, is being 

transformed by reinforcement learning 

which adapts the controller's actions 

according to the system's behavior.  

Fifth, machine learning tackles the 

challenges of non-linear control 

systems. Techniques like deep learning 

prove particularly useful, capable of 

modeling complex, high-dimensional, 

and non-linear relationships which 

traditional methodologies struggle 

with. Despite these advantages, 

machine learning's application comes 

with its own set of challenges. It often 

demands extensive data and 

computational resources, and the 

resulting models may lack the 

interpretability of traditional ones, 

making system behavior 

comprehension difficult. 

Consequently, meticulous and 

thoughtful application of these 

techniques is paramount, marking a 

significant area for future 

investigation. 
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inTroducTion 
System identification and control play 

a pivotal role across a wide array of 

industries and domains, contributing 

significantly to their efficiency, safety, 

and overall performance. One of the 

key advantages of system 

identification is its ability to accurately 

model complex systems, allowing for 

a comprehensive understanding of 

their behavior. In engineering 

disciplines such as aerospace, 

automotive, and robotics, system 

identification enables engineers to 

create mathematical models that 

simulate the dynamics of physical 

systems. These models facilitate the 

design and optimization of control 

strategies, leading to enhanced 

stability, reduced oscillations, and 

better overall system response. 

Additionally, system identification 

aids in fault detection and diagnosis, 

enabling timely maintenance and 

preventing catastrophic failures in 

critical systems [1], [2]. 

In the realm of healthcare, system 

identification and control play an 

indispensable role in personalized 

medicine and patient care. By 

analyzing patient data, including vital 

signs, medical history, and genetic 

information, healthcare professionals 

can develop accurate models of 

individual patient responses to specific 

treatments [3]. These models empower 

clinicians to tailor medical 

interventions precisely, ensuring the 

best possible outcomes for patients 

while minimizing adverse effects. 

Moreover, the application of control 

theory in medical devices, such as 

insulin pumps and pacemakers, 

enables these devices to adapt to 
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changing conditions and provide 

patients with optimal treatment, thus 

enhancing their quality of life. 

Beyond engineering and healthcare, 

system identification and control find 

extensive use in environmental 

sciences and natural resource 

management. In climate modeling, for 

instance, accurate identification of 

various climatic parameters is crucial 

for predicting future climate scenarios 

and understanding the impacts of 

human activities on the environment. 

Furthermore, control techniques are 

employed in environmental 

management to regulate pollution 

emissions, control water resources, 

and protect ecosystems. This 

integration of system identification 

and control in environmental 

applications contributes to sustainable 

practices and the preservation of 

planet's delicate ecological balance 

[4]. 

Throughout history, the development 

of system identification and control 

has been marked by various 

approaches that have shaped the field 

and paved the way for modern 

methodologies. One of the earliest 

historical approaches can be traced 

back to ancient civilizations, where 

observations and empirical 

experiments were used to understand 

and control natural phenomena. For 

instance, the invention of the water 

clock in ancient Egypt demonstrated 

an early form of control in measuring 

time based on the flow of water. 

Similarly, the use of water wheels in 

ancient Greece for irrigation and 

milling showcased early attempts at 

controlling energy conversion 

processes. 

During the industrial revolution, with 

the advent of mechanization and 

automation, the need for more 

systematic control became apparent. 

This led to the development of 

feedback control systems, with James 

Watt's centrifugal governor being a 

notable historical contribution. The 

governor automatically adjusted the 

speed of steam engines based on 

feedback from the engine's rotational 

speed, illustrating a rudimentary form 

of control theory. Later advancements 

in electrical engineering, such as the 

invention of the telegraph, further 

paved the way for more sophisticated 

control systems that utilized electrical 

signals for communication and control 

[5]. 

In the mid-20th century, significant 

progress was made in system 

identification and control through the 

work of pioneers like Norbert Wiener 

and Rudolf Kalman. Wiener's work on 

cybernetics laid the foundation for 

understanding feedback and control in 

complex systems, while Kalman's 

groundbreaking work on linear 

systems and estimation theory 

revolutionized the field of control 

engineering [6]. These historical 

developments, along with the 

emergence of digital computing, led to 

the formulation of modern control 

theories like state-space control and 

adaptive control [7]. 
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machinE lEarning 

applicaTions  

System Identification: 

System identification is a vital aspect 

of control theory and signal 

processing, which focuses on the 

construction of mathematical models 

for dynamical systems based on 

observed data. Traditional system 

identification methods are intricate 

processes, relying on deep 

understanding and detailed 

characterization of the system's 

behavior and underlying physics. 

However, with the advent of machine 

learning (ML), a paradigm shift has 

occurred, offering a more efficient, 

data-centric approach towards system 

identification. This essay elucidates 

the transition from traditional system 

identification methods to machine 

learning-based approaches, focusing 

on techniques such as neural networks, 

random forests, and support vector 

machines [8]. 

The primary objective of system 

identification is to construct a 

mathematical model that encapsulates 

a system's dynamics using 

observational data. Traditionally, this 

process involved establishing a 

presumed model structure based on the 

underlying physics of the system and 

its prior knowledge, and then 

identifying the model's parameters 

through various fitting techniques. The 

selection of model structure is usually 

guided by a mixture of theoretical 

analysis, intuition, and experience. 

Techniques such as ARX, ARMAX, 

Box-Jenkins, among others, have been 

employed in this context. While these 

methods have been effective, they tend 

to be labor-intensive and require 

substantial expertise and 

understanding of the system's physics. 

These challenges sparked the quest for 

alternative techniques that can learn 

from data directly, setting the stage for 

machine learning's entry into the field 

of system identification [9].  

Machine learning, a subset of artificial 

intelligence, involves training 

computational models on data to make 

predictions or decisions without being 

explicitly programmed to perform a 

task. Unlike traditional system 

identification techniques that rely on 

mathematical and physical principles, 

machine learning models are data-

driven, learning the input-output 

relationships directly from data. 

Machine learning has demonstrated 

significant promise in system 

identification, providing alternatives 

to traditional methods and bridging the 

knowledge gap required in traditional 

system identification. 

Neural networks, a subset of machine 

learning models, are among the most 

widely used techniques for system 

identification. These models mimic the 

structure and function of biological 

neural networks, adjusting their 

parameters based on the data they 

process. Neural networks are 

particularly suitable for system 

identification due to their universal 

approximation capabilities, which 

allow them to represent a wide variety 

of system dynamics. However, 

training neural networks requires large 

amounts of data and computational 

resources, and the resulting models 

can be difficult to interpret, often 

labeled as black-box models. 
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Random forests represent another 

class of machine learning models used 

in system identification. A random 

forest is an ensemble of decision trees, 

each constructed independently using 

a subset of the training data. The 

model's output is determined by 

aggregating the outputs of individual 

trees. Random forests offer several 

advantages, including the ability to 

handle large datasets, resistance to 

overfitting, and providing a measure of 

variable importance. Despite these 

benefits, random forests may struggle 

with extrapolation and do not 

inherently model temporal dynamics, 

which are crucial for system 

identification. 

Support vector machines (SVMs), 

another machine learning technique, 

have also been employed in system 

identification. SVMs, primarily used 

for classification tasks, can also be 

used for regression (SVR) by fitting a 

function that deviates by no more than 

a certain extent from the observed 

targets. SVMs are particularly useful 

when the data is sparse or in high 

dimensions. However, SVMs, like 

random forests, do not inherently 

handle temporal dependencies, which 

may limit their effectiveness in system 

identification. 

Model Predictive Control (MPC): 

Machine Learning, specifically 

Reinforcement Learning, is indeed 

changing the face of Model Predictive 

Control (MPC), creating a revolution 

that enables more accurate models and 

optimizing control actions. In 

traditional control systems, MPC, a 

type of advanced controller with an 

optimization layer, utilizes a model of 

the process to predict future outputs 

and thereby adjust the input variables 

accordingly to achieve optimal 

performance.  

MPC can be regarded as the 'gold 

standard' of control methods, 

particularly in situations where the 

process has multiple inputs and 

outputs, constraints, and time delays. It 

offers better performance than 

traditional control methods such as 

PID controllers in handling complex 

dynamics, disturbances, and 

constraints [10], [11]. The main 

challenge lies in developing an 

accurate model of the process, which 

is often not possible in complex 

systems with nonlinearities and 

uncertainties [12]. 

This is where machine learning steps 

in, offering promising prospects for 

enhancing MPC. Machine learning 

algorithms can process large amounts 

of data, extract hidden patterns, and 

thereby create more accurate models 

than traditional methods. Furthermore, 

reinforcement learning, a specific type 

of machine learning, provides 

additional benefits for MPC [13]. 

Reinforcement Learning (RL) is a 

branch of machine learning that deals 

with agents learning optimal actions 

through interactions with their 

environment. The agent is rewarded or 

penalized based on the consequences 

of its actions, which guides it towards 

learning an optimal policy. This 

concept of learning by interaction is 

inherently aligned with control theory, 

where an MPC controller also interacts 

with the system to adjust control 

actions [14]. 
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An RL agent iteratively explores the 

environment, takes actions, and 

updates its policy based on the 

observed reward. In doing so, it learns 

to control the environment effectively, 

providing a solution to the problem of 

creating accurate models in complex 

systems. RL can model the 

environment with a high degree of 

accuracy by learning from raw data 

collected from interactions. Hence, it 

can replace the need for developing 

precise process models in MPC, which 

are often difficult to obtain [15], [16]. 

Traditionally, MPC solves an 

optimization problem at every time 

step to determine the optimal control 

actions [17]. This can be 

computationally expensive and may 

not be feasible for systems with fast 

dynamics. RL, on the other hand, 

learns the optimal control policy 

offline during a training phase. After 

training, the learned policy can 

generate optimal control actions 

almost instantaneously, providing a 

solution to the computational 

challenge in MPC. Moreover, RL can 

handle nonlinearities and uncertainties 

in systems, which are challenging for 

traditional MPC. RL algorithms are 

designed to learn complex mappings 

between states and actions, hence can 

learn optimal policies even in 

nonlinear systems. Additionally, they 

can handle uncertainties through 

exploration, where the agent takes 

random actions to gather more 

information about the environment 

[18]. 

The RL agent learned the thermal 

dynamics of the building and 

controlled the system effectively, 

reducing energy consumption by 19% 

compared to a traditional MPC 

controller. This study highlights the 

potential of RL in enhancing MPC and 

indicates a promising future for the 

application of machine learning in 

control systems. 

RL algorithms require a large amount 

of data for training, which can be 

difficult to obtain in practice [19]. 

Moreover, ensuring the safety of the 

system during the exploration phase 

can be a challenge. It is essential to 

develop safe exploration strategies to 

ensure that the RL agent does not harm 

the system during training. 

Furthermore, the performance of RL 

algorithms can be sensitive to the 

choice of hyperparameters, making the 

tuning process challenging. It is also 

important to consider robustness and 

reliability, as RL-based controllers 

need to perform well under different 

operating conditions and disturbances. 

The combination of MPC's ability to 

handle constraints and disturbances, 

and RL's ability to learn from raw data 

and handle nonlinearities, can create 

powerful control systems that can 

effectively control complex systems. 

The future will likely see more 

research in this area, aiming to 

overcome the challenges and fully 

harness the potential of machine 

learning in enhancing MPC [20]. 

Fault Detection and Diagnostics:  

The application of machine learning 

techniques for anomaly detection and 

fault diagnosis in various systems has 

gained significant attention in recent 

years. This interest is driven by the 

capability of machine learning to 

identify complex patterns in large data 
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sets, a feat often challenging or 

impossible with conventional methods 

[21]. The objective of anomaly 

detection or fault diagnosis is to 

identify unusual or abnormal behavior 

in a system, which could indicate 

potential faults, threats, or system 

failures. The anomaly detection 

process typically entails training a 

machine learning model on normal, 

expected behavior of the system, and 

then using this trained model to detect 

deviations that may signal anomalies 

[22]. 

One fundamental aspect of this 

approach is defining what constitutes 

"normal" behavior for the system. This 

process often involves the collection 

and analysis of operational data during 

periods when the system is functioning 

correctly. This data set becomes the 

training input for the machine learning 

model. Once trained, the model has 

essentially learned the pattern of 

normal system behavior, and any 

significant deviation from this pattern 

can be identified as an anomaly. 

The nature of machine learning 

algorithms, particularly their ability to 

learn high-dimensional non-linear 

patterns, is particularly beneficial in 

this context. Conventional statistical 

techniques may fall short when dealing 

with complex, high-dimensional 

systems, where the interactions and 

dependencies between different 

components of the system are not 

linear or easily understandable [23]. 

Machine learning techniques, 

however, can handle high 

dimensionality and capture complex 

relationships in the data, making them 

well-suited for anomaly detection in 

intricate systems. 

There exist a plethora of machine 

learning techniques utilized for 

anomaly detection, including 

supervised, unsupervised, and semi-

supervised learning methods. 

Supervised learning techniques such 

as Support Vector Machines (SVMs) 

and Neural Networks require labeled 

data, i.e., data where each instance is 

assigned a 'normal' or 'anomaly' tag. 

The models learn from this labeled 

data and subsequently classify unseen 

data points into either class. However, 

the availability of labeled data is not 

always guaranteed, especially in the 

context of anomaly detection where 

anomalies are rare events [24], [25]. 

In contrast, unsupervised learning 

techniques such as clustering or 

density estimation do not require 

labeled data [26]. They work by 

grouping similar data points together, 

assuming that normal data points occur 

in dense regions of the feature space, 

while anomalies are points that lie far 

from any dense region. K-means, 

DBSCAN, and Autoencoders are 

examples of unsupervised learning 

techniques used for anomaly detection 

[27].  

Semi-supervised learning methods, 

which only require normal data for 

training, have also been applied in this 

context. One-class SVM and 

autoencoders are typical examples. 

Here, the machine learning model is 

trained only on normal data and learns 

to recognize its patterns. During 

operation, if the system's behavior 

deviates significantly from the learned 
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normal pattern, the model identifies it 

as an anomaly. 

One illustrative application of machine 

learning for anomaly detection is in 

predictive maintenance in industries. 

For example, sensor data from 

machines can be fed into a machine 

learning model to identify anomalies 

in machine operation, which could 

indicate impending failures. Early 

detection of such anomalies can 

prevent catastrophic failures, leading 

to safer operations and considerable 

savings in maintenance costs [28], 

[29]. 

In the realm of cybersecurity, machine 

learning-based anomaly detection is 

used to identify malicious activities or 

intrusions [30]. The normal behavior 

of a network or system is modeled, and 

any deviation from this behavior could 

indicate a potential security threat.  

Despite the potential and successes of 

machine learning in anomaly 

detection, certain challenges persist. 

These include handling imbalanced 

datasets where the number of normal 

instances far outweighs anomalies, 

dealing with evolving or changing 

definitions of what constitutes normal 

behavior in dynamic systems, and the 

interpretability of the models, among 

others [31].  

Adaptive Control:  

Adaptive control is a branch of control 

theory that focuses on the adjustment 

of control parameters in real time, 

catering to the changing dynamics of a 

system [32]. In other words, an 

adaptive control system is designed to 

deal with a certain degree of 

uncertainty in the model or the 

environment, being capable of 

adjusting itself based on the observed 

behavior of the system. Such 

flexibility is crucial when dealing with 

systems where the parameters can vary 

over time, or the models are not 

accurately known in advance. 

Machine Learning, particularly 

Reinforcement Learning, can play a 

pivotal role in adaptive control [33]. 

Reinforcement Learning (RL) is a 

subset of machine learning where an 

agent learns to make decisions by 

interacting with an environment. The 

agent, through a process of trial-and-

error, learns a policy that maximizes a 

reward signal. In the context of 

adaptive control, this reward signal 

can be designed to reflect the control 

objectives [34]. 

The RL agent interacts with the system 

and adjusts its actions based on the 

observed changes in the system's 

behavior. It essentially learns an 

optimal control policy that maps the 

system's state to an action that 

maximizes the expected cumulative 

reward. Since the RL agent learns from 

the system's feedback, it can adapt the 

control actions to the changes in the 

system dynamics [35], [36]. 

One of the advantages of using RL in 

adaptive control is its ability to handle 

non-linear systems [37]. Many real-

world systems exhibit non-linear 

dynamics, which can be challenging to 

control using traditional methods. RL, 

on the other hand, can learn complex 

mappings from states to actions, 

making it suitable for controlling non-

linear systems. Another advantage is 

that RL does not require an explicit 

model of the system. It learns the 

control policy directly from interaction 
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with the system. This feature is 

beneficial for adaptive control, as the 

system dynamics can change over 

time, making it difficult to have an 

accurate model in advance. 

Additionally, RL has a notion of 

exploration and exploitation. 

Exploration involves taking random 

actions to learn more about the 

environment, while exploitation 

involves taking the best action learned 

so far. This balance between 

exploration and exploitation can help 

in adapting the control actions to the 

changing system dynamics [38].  

RL typically requires a large number 

of interactions with the system to learn 

an optimal policy, which may not be 

feasible in certain scenarios. Another 

challenge is the safety during 

exploration. While exploring the 

environment, the RL agent can take 

actions that can potentially harm the 

system. This challenge necessitates the 

design of safe exploration strategies in 

Research  [39], [40]. 

Furthermore, the performance of RL 

algorithms can be sensitive to the 

choice of hyperparameters, and the 

tuning process can be difficult. The 

interpretability of the learned policy is 

another concern, as it is often desirable 

to understand the controller's behavior, 

especially in safety-critical systems. 

The ability to learn from the system's 

feedback and adapt the control actions 

accordingly makes RL a powerful tool 

for adaptive control.  

Non-linear Control Systems: 

Non-linear systems pose a significant 

challenge for traditional control 

methodologies due to their inherent 

complexity and the intricate 

relationships between system 

variables [41], [42]. A non-linear 

system, as opposed to a linear one, 

does not adhere to the principle of 

superposition, meaning the system's 

output is not directly proportional to its 

input. As a result, traditional control 

methodologies, designed primarily for 

linear systems, struggle to accurately 

model and control non-linear systems.  

The advent of Machine Learning (ML) 

has provided a solution to these 

challenges. Machine learning 

techniques can model complex, high-

dimensional, non-linear relationships, 

making them particularly well-suited 

for non-linear systems. By processing 

large amounts of data, machine 

learning algorithms can identify 

intricate patterns and dependencies 

among system variables, allowing for 

effective control of non-linear 

systems. 

Among various machine learning 

techniques, Deep Learning (DL) is 

especially effective when dealing with 

non-linear systems. Deep learning, a 

subset of machine learning, is based on 

artificial neural networks with 

multiple layers (known as "deep" 

networks) [43]. These deep networks 

have the ability to model complex 

functions and capture high-level 

features in the data, making them 

powerful tools for modeling non-linear 

systems [44]. 

Deep learning models consist of 

multiple layers of interconnected 

nodes or "neurons". Each neuron 

applies a non-linear transformation to 

its inputs and passes the result to the 

next layer. By stacking many such 
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layers together, deep learning models 

can represent highly complex 

functions, thereby accurately 

modeling the non-linear behavior of 

systems. 

In the context of control systems, deep 

learning can be utilized in two primary 

ways. First, it can be used for system 

identification, i.e., to create an 

accurate model of the non-linear 

system. Given sufficient data about the 

system's inputs and outputs, a deep 

learning model can learn the 

underlying non-linear relationship 

[45]. This learned model can then be 

used in a model-based control strategy. 

Second, deep learning can be used to 

directly learn the control policy. In this 

approach, a deep learning model is 

trained to map the system's state to 

control actions. Reinforcement 

learning, combined with deep learning 

(commonly known as Deep 

Reinforcement Learning or DRL), is 

often used for this purpose. The DRL 

agent interacts with the system, and 

through a process of trial-and-error, 

learns a policy that optimizes a reward 

signal. 

Deep learning models require a large 

amount of data for training, which may 

not always be available [46]. They are 

also computationally intensive and 

may not be suitable for systems 

requiring real-time control. 

Furthermore, deep learning models are 

often considered as 'black boxes', i.e., 

their internal workings and decision-

making processes are not easily 

interpretable. This lack of 

transparency and interpretability can 

be a concern, especially in safety-

critical systems where understanding 

the controller's behavior is essential. 

conclusion  
In the course of this research, it is 

elucidated how advanced machine 

learning techniques are facilitating 

new approaches to system 

identification and control. The focus 

has been on five principal applications. 

Initially, the research presents the 

integration of machine learning in 

system identification, traditionally 

dependent on mathematical models. 

Machine learning models, such as 

neural networks, random forests, and 

support vector machines, offer an 

empirical data-based approach to 

predict system behavior. 

Secondly, the enhancement of Model 

Predictive Control (MPC) via machine 

learning is examined, with emphasis 

on the derivation of precise models 

and optimization of control actions 

[47], [48]. Subsets of machine 

learning, notably reinforcement 

learning, are demonstrated to be 

effective in deriving optimal control 

policies through interactions with the 

environment [49], [50]. 

Machine learning's capacity to identify 

system anomalies has been analyzed as 

the third application. The research 

illustrates how models trained on 

standard system behavior can 

recognize potential faults or 

deviations, enabling effective fault 

detection and diagnostics. 

Furthermore, the study elaborates on 

how reinforcement learning has 

revolutionized adaptive control by 

permitting real-time adjustments of 
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control parameters in response to 

system dynamics. 

Lastly, the research dwells on the role 

of machine learning, particularly deep 

learning, in addressing challenges 

related to non-linear control systems. 

Deep learning, by virtue of modeling 

high-dimensional and non-linear 

relationships, offers capabilities that 

traditional methodologies might find 

challenging. 

System identification constitutes a 

significant aspect of control systems 

and signal processing. In traditional 

approaches, it is primarily concerned 

with the development of mathematical 

models that are capable of accurately 

representing the behaviors of physical 

systems. Such models serve to 

delineate the interactions among the 

various elements of the system, 

thereby enabling predictions about the 

system's responses under different 

conditions. However, creating these 

mathematical models can be an 

intricate process, often demanding 

comprehensive knowledge about the 

physics of the system, and in some 

instances, it may not even be feasible 

due to the high complexity or 

nonlinearity of the system. 

In recent years, machine learning has 

emerged as a viable alternative to these 

traditional approaches in system 

identification. The fundamental 

premise of this alternative is that 

machine learning algorithms can be 

trained on empirical data to 'learn' the 

behavior of the system, rather than 

relying on physical laws or first 

principles to derive mathematical 

models. This empirical approach 

allows for the capture of complex, 

nonlinear dynamics and interactions 

that may be difficult to model 

mathematically. Moreover, machine 

learning methods, such as neural 

networks, random forests, and support 

vector machines, have demonstrated 

significant potential for application in 

system identification, capable of 

accommodating large-scale, high-

dimensional data sets and delivering 

robust predictive performance [51]. 

Model Predictive Control (MPC), a 

type of control algorithm that uses a 

model of the system to predict future 

behavior and determine optimal 

control actions, also stands to benefit 

from the integration of machine 

learning techniques [52]. By nature, 

MPC necessitates the use of a model to 

forecast the future states of the system. 

Therefore, the quality and accuracy of 

the model play a decisive role in the 

efficacy of the control strategy. 

Traditional methods for formulating 

these models often rely on 

mathematical representations derived 

from the fundamental principles 

governing the system, which may not 

accurately capture all the intricacies of 

the system's behavior [53]. 

Machine learning, however, has the 

potential to enhance MPC by enabling 

the development of more accurate 

models. Through the training of 

machine learning models on historical 

data, the complex, nonlinear 

relationships within the system can be 

captured more comprehensively. This 

can lead to more precise predictions of 

the future states of the system, 

consequently facilitating more 

effective control decisions. 

Furthermore, machine learning 
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techniques can also be employed to 

optimize control actions directly, 

bypassing the need for explicit model 

formulation. In such an approach, the 

machine learning algorithm is tasked 

with learning the control policy 

directly from the data, thereby 

circumventing potential inaccuracies 

introduced by model 

misrepresentations. 

Reinforcement learning, a subtype of 

machine learning, involves an agent 

that learns to make decisions by 

interacting with its environment. It 

does so by adopting a trial-and-error 

approach, receiving rewards or 

penalties based on the outcomes of its 

actions, and subsequently adjusting its 

behavior to maximize rewards. This 

capability makes reinforcement 

learning particularly suitable for 

application in MPC, where the agent 

can be tasked with learning optimal 

control policies. This involves the 

agent experimenting with different 

control actions, observing the resulting 

system behavior, and iteratively 

refining its control policy to optimize 

a certain objective, such as minimizing 

energy consumption or maximizing 

system efficiency. In this way, 

reinforcement learning provides a 

dynamic, data-driven approach to 

MPC, promising enhanced control 

performance and system efficiency. 

Fault detection and diagnostics 

represent critical aspects of system 

management, the objective of which is 

to detect anomalies or faults in the 

system promptly, ideally before they 

escalate into more serious problems. 

Traditionally, this task has often relied 

on heuristic methods or model-based 

techniques, which can be limited in 

their ability to handle complex, 

nonlinear system dynamics or to detect 

subtle, incipient faults. However, the 

advent of machine learning offers new 

possibilities for fault detection and 

diagnostics. By training a machine 

learning model on data representing 

normal system behavior, the model can 

establish a 'baseline' or 'profile' of the 

system under normal operation. 

Consequently, when the system 

deviates from this expected behavior, 

the model can recognize these 

deviations as anomalies, indicating 

potential faults. This capability to 

learn from data and adapt to complex, 

nonlinear system dynamics makes 

machine learning particularly suitable 

for fault detection and diagnostics 

[22], [54]. 

Adaptive control, as the name 

suggests, aims to adapt or adjust the 

control parameters in real time as the 

system dynamics change. In 

traditional control strategies, these 

parameters are typically fixed and 

determined based on an initial model 

of the system [55]. However, in many 

practical scenarios, the system 

dynamics may change over time due to 

various factors such as wear and tear, 

changes in operating conditions, or 

external disturbances. Consequently, a 

fixed control strategy may not always 

provide optimal performance. 

Machine learning, particularly 

reinforcement learning, offers a 

potential solution to this challenge. 

Reinforcement learning can enable the 

controller to learn and adapt its actions 

in real time based on the observed 

changes in the system's behavior. It 

does so by continuously interacting 
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with the system, receiving feedback in 

the form of rewards or penalties, and 

adjusting its control policy to optimize 

a certain objective, thereby providing 

a dynamic, learning-based approach to 

adaptive control [56]. 

The realm of non-linear control 

systems presents a unique set of 

challenges, primarily due to the 

inherent complexity and 

unpredictability of nonlinear system 

behaviors. Traditional control 

methodologies, such as linear control 

theory, can struggle with handling 

these nonlinear systems, often 

requiring simplifications or 

approximations that may compromise 

control performance [57]. On the other 

hand, machine learning, given its 

inherent ability to model complex, 

high-dimensional, and nonlinear 

relationships, can offer an effective 

means to model and control such 

systems [58], [59]. In particular, 

techniques such as deep learning, 

which utilizes neural networks with 

multiple hidden layers, have shown 

great promise in this regard. Deep 

learning algorithms can learn to 

represent and generalize complex, 

nonlinear patterns from data, making 

them especially suitable for modeling 

and controlling nonlinear systems. 

Thus, machine learning and deep 

learning present a significant 

advancement in the field of nonlinear 

control systems, promising improved 

control performance and increased 

system robustness. 
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