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Abstract

Fog computing paradigm extends cloud services to the network’s edge in order to improve the performance of latency-sensitive and resource-
constrained applications by enabling localized processing and storage. As the proliferation of Internet of Things (IoT) devices continues to grow,
fog computing presents a viable solution for addressing the limitations of centralized cloud architectures. However, effective task scheduling in
fog computing environments is a significant challenge in heterogeneous networks where nodes vary in terms of computational power, storage,
and energy capacity. This paper explores the development and application of AI-based algorithms for task scheduling in heterogeneous
fog computing environments, focusing on optimizing QoS metrics simultaneously. The paper first provides an overview of fog computing
architecture and the challenges posed by heterogeneity. It then explores the role of AI in task scheduling, highlighting how machine learning
(ML) and reinforcement learning (RL) techniques can be leveraged to improve decision-making processes. Through a detailed analysis of
existing AI-based scheduling models, this study outlines the key features, advantages, and limitations of each. The paper also proposes a
novel AI-driven approach that integrates multiple QoS metrics, evaluates task placement efficiency, and adapts to real-time network conditions.
The findings suggest that AI-driven scheduling can significantly reduce latency, minimize energy consumption, and improve response times,
contributing to more efficient resource utilization in fog computing environments.
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1. Introduction

Smartphones, sensors, and IoT devices continuously generate large
amounts of data, but processing this data to extract insights demands
significant computational resources. Due to the limited processing
power, memory, and battery life of these devices, they are unable
to handle such tasks efficiently. Consequently, the processing is of-
floaded to more powerful systems, as attempting to perform it locally
would be impractical or ineffective.
One common solution to this resource limitation is the use of

cloud services for computational offloading. In this scenario, data
are transmitted from the end device to an application running in a
cloud data center, where the processing occurs. Cloud computing
offers several advantages, notably its virtually unlimited computa-
tional resources, which can handle complex tasks and large-scale
data processing without being restricted by local device limitations.
This makes cloud-based offloading a viable solution in many contexts
where the data volume or processing demand is high. However, this
approach comes with its own set of challenges in scenarios where
latency and bandwidth are critical considerations.
Latency is a key concern when offloading tasks to a cloud data

center, as the center may be located far from the end device, possibly
across multiple network hops. In application domains that demand
real-time or near-real-time data processing—such as augmented real-
ity, road traffic control systems, and gaming—such latency can be a
critical barrier to usability. In these cases, even small delays caused
by network transmission times and data center processing overhead
can make cloud-based solutions impractical.
Additionally, large-scale data uploads to the cloud introduce the

potential for network congestion, especially if many devices are si-

multaneously transmitting vast quantities of data to the same cloud
infrastructure. As the number of connected devices continues to grow
exponentially, this problem becomes more pronounced, leading to
bottlenecks in network traffic that not only degrade the performance
of individual applications but also increase overall system latency.
This can further exacerbate delays and reduce the effectiveness of
real-time applications. In situations where both high bandwidth and
low latency are essential, cloud-based offloading may fail to meet the
stringent requirements for system responsiveness and performance.

To address the challenges inherent in cloud computing those re-
lated to latency and network congestion, the paradigm of fog com-
puting has emerged as a complementary approach. Fog computing
introduces an intermediary computational layer between the end
devices and the cloud [1]. This intermediary layer is composed of fog
nodes, which are computational resources deployed in a geograph-
ically distributed manner, typically near the edge of the network,
closer to the end devices. By positioning fog nodes closer to the data
sources, fog computing can significantly reduce the latency associ-
ated with data transmission, as the data no longer need to travel to
distant cloud data centers for processing. Fog computing represents a
layered architecture designed to enable ubiquitous access to a shared,
scalable continuum of computational resources. This paradigm is
well-suited for the deployment of distributed, latency-sensitive appli-
cations and services within the Internet of Things (IoT) ecosystem.
The core idea behind fog computing is to bring computational, stor-
age, and network resources closer to the edge, reducing the reliance
on centralized cloud services by positioning intermediate fog nodes
between end-devices and the cloud. These fog nodes, which can be
either physical or virtual, manage and process data locally or, when
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Figure 1. Fog Computing Architecture

Characteristic Definition Importance Example Use Case
Contextual Loca-
tion Awareness

Awareness of fog nodes’ logical posi-
tioning

Minimizes latency by optimizing com-
munication paths

Applications requiring low-latency,
such as real-time health monitoring

Geographical Dis-
tribution

Distribution of computing resources
across multiple locations

Supports applications that require dis-
tributed resources

High-quality video streaming for vehi-
cles in motion

Heterogeneity Ability to process data from various
sources with different network capa-
bilities

Facilitates data handling across di-
verse devices and networks

Gathering and processing data from
smart cities or industrial IoT systems

Interoperability
and Federation

Collaboration among multiple service
providers and systems

Ensures seamless integration of ser-
vices across domains

Real-time streaming involving differ-
ent networks and providers

Real-Time Interac-
tions

Real-time processing as opposed to
batch processing

Enables instant analysis and response
to time-sensitive data

Autonomous vehicles or real-time traf-
fic management

Autonomy Ability of fog nodes to function inde-
pendently and make decisions locally

Allows for localized decision-making,
reducing dependence on central sys-
tems

Individual smart home systems or lo-
cal manufacturing units

Table 1. Essential characteristics of fog computing and their significance.

necessary, forward it to the cloud for additional processing [2].
Fog nodes function similarly to cloud resources but are localized

to the network edge, making them ideal for latency-sensitive appli-
cations. This proximity allows end devices to offload their computa-
tional tasks to a nearby fog node, which can process the data and re-
turn the results with much lower latency than would be possible with
cloud computing. Because fog nodes are distributed and decentral-
ized, they alleviate the congestion problems associated with sending
all data to a central cloud infrastructure. The load is distributed across
multiple fog nodes, reducing the likelihood of network bottlenecks
and improving overall system scalability.
Another advantage of fog computing is its flexibility in leveraging

existing network infrastructure. For instance, network devices like
routers, gateways, or base stations, which are already deployed across
the network to manage data transmission, can be enhanced with
additional computational resources to act as fog nodes. This reuse of
existing equipment reduces the need for deploying entirely new infras-
tructure, thereby lowering the cost and complexity of implementing
fog computing solutions. Alternatively, dedicated fog nodes can be
deployed specifically for the purpose of handling computational tasks
at the network edge, providing a more robust and tailored solution
for environments with high computational or latency demands [3].
Fog nodes, much like cloud servers, support virtualization and

containerization technologies. These technologies enable multiple
applications from different tenants to run simultaneously on the same
physical hardware while maintaining isolation between them. This
is crucial for multi-tenant environments where different users or

applications may have varying security and resource requirements.
Virtualization facilitates resource management, making it easier to al-
locate computing power dynamically based on demand, and enables
rapid deployment, scaling, and shutdown of applications as needed.
Containers, in particular, have become a popular solution for man-
aging lightweight, efficient, and portable application environments
that can be easily moved between fog and cloud nodes.
The architectural model of fog computing is well-suited for a va-

riety of real-time applications. In addition to reducing latency and
preventing cloud overloading, fog computing offers improved fault
tolerance. Since fog nodes are distributed, failures in individual nodes
or network segments have a limited impact on the overall system.
The decentralized nature of fog computing makes it inherently more
resilient to localized disruptions, as other nearby nodes can continue
processing data and supporting the system in the event of a failure.
In practice, fog computing operates as an extension of the cloud, of-

fering a multi-tiered computing model that spans from the end device
(the edge) to fog nodes and, ultimately, to cloud data centers. By inte-
grating fog computing into an existing cloud infrastructure, systems
can take advantage of both low-latency local processing and the expan-
sive computational power of the cloud for more resource-intensive
tasks that are less sensitive to delays [4]. This hybrid approach pro-
vides a scalable, flexible solution for a wide range of applications.
Applications that benefit most from fog computing include those

that require immediate processing and action, such as autonomous
vehicles, industrial automation, and smart cities. In autonomous
vehicles, for instance, the data generated by onboard sensors must
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be processed instantaneously to make driving decisions, such as de-
tecting obstacles and adjusting speed. Sending this data to a distant
cloud data center for processingwould introduce unacceptable delays,
whereas processing it on nearby fog nodes ensures that the vehicle
can react in real-time. Similarly, in industrial automation, machinery
equipped with sensors can offload real-time monitoring and con-
trol tasks to fog nodes, enabling faster decision-making and reduced
downtime.
Smart cities, which integrate IoT devices to monitor traffic, energy

consumption, and environmental conditions, also stand to gain from
fog computing. In such environments, data from sensors dispersed
throughout a city can be processed locally at fog nodes to ensure quick
responses to dynamic conditions, such as adjusting traffic signals
based on real-time traffic flow or responding to fluctuations in energy
demand. This capability not only reduces latency but also conserves
network bandwidth by processing data closer to its source.
The Role of Fog Nodes

At the heart of the fog computing architecture lies the fog node, which
can take the form of either physical components such as routers,
switches, and servers, or virtual entities such as virtualized switches,
cloudlets, and virtual machines. These fog nodes are context-aware,
meaning they possess an understanding of their geographic and logi-
cal position within the network, which is crucial for their ability to
deliver low-latency services. They also provide essential communi-
cation and data management services, bridging the gap between the
network’s edge, where IoT devices operate, and the centralized cloud.
In essence, fog nodes create a localized computing environment that
enhances the overall efficiency and responsiveness of the network.
Fog nodes can be deployed in various configurations depending

on the system’s requirements. For instance, they can operate in a
centralized manner, where one or a few nodes handle most of the
computational tasks, or they can be part of a decentralized architec-
ture, where multiple nodes collaborate to deliver services. In certain
cases, fog nodes may operate as stand-alone units, communicating
with one another to achieve distributed processing. Alternatively,
they can form federated clusters that provide horizontal scalability
by mirroring services or extending their reach across geographically
dispersed locations. This ability to federate is key to the scalabil-
ity and adaptability of fog computing, especially in large-scale IoT
applications where devices are often spread over vast areas [5].

2. Characteristics of Fog Computing and Fog Nodes

Fog computing distinguishes itself from other computing paradigms
like cloud or edge computing through several essential characteristics.
However, not all applications or services utilize the full range of fog
computing capabilities. One of its defining features is contextual
location awareness and low latency, which allows fog nodes to pro-
cess data locally or determine the shortest path for communication,
thereby minimizing delays. This is crucial for latency-sensitive ap-
plications such as autonomous vehicles, smart manufacturing, and
healthcare monitoring, where real-time data analysis and response
are essential. The close proximity of fog nodes to smart end-devices
ensures rapid processing, eliminating the need to rely on distant cloud
services [6].
In contrast to the centralized nature of cloud computing, fog com-

puting resources are deployed across wide geographical areas to sup-
port dynamic, mobile applications. For instance, fog nodes can be
positioned along highways to deliver high-quality streaming services
to vehicles in motion, maintaining seamless connectivity and service
continuity. This distributed architecture ensures that fog computing
can meet the demands of geographically diverse applications [7].
Heterogeneity is also a core feature of fog computing, as it supports

a wide variety of devices and communication protocols. Fog nodes
must be able to interact with different types of end-devices, ranging
from basic sensors to complexmachinery, whilemanaging data across
multiple communication technologies. This flexibility is important in

IoT environments, where devices vary widely in terms of form factor,
communication capabilities, and data formats.
Interoperability and federation are crucial for many fog comput-

ing applications, particularly those involving cooperation between
different service providers. For example, real-time services like video
streaming or remote monitoring often require seamless integration
across multiple domains. To achieve this, fog computing must sup-
port interoperability between heterogeneous systems and facilitate
the creation of federated architectures, where fog nodes fromdifferent
providers collaborate and share resources.
Real-time interactions further set fog computing apart. Unlike

batch processing, which is common in traditional cloud environ-
ments, fog computing supports applications that require immediate
feedback. This capability is important in scenarios like industrial
automation, emergency response systems, or telemedicine, where
timely data processing and minimal delay are critical for effective
operation.
To support these characteristics, fog nodes need to exhibit several

key attributes. Autonomy is one such attribute, allowing fog nodes to
operate independently and make local decisions without relying on a
centralized controller. This autonomy enables low-latency operations
and enhances scalability and resilience, as fog nodes within a cluster
can coordinate to optimize resource usage and service delivery.
Heterogeneity in fog nodes is essential, as they must be capable of

functioning in diverse environments and supporting a broad range
of devices. In IoT ecosystems, fog nodes interact with a variety of
devices, such as sensors, actuators, and cameras, each with unique
communication protocols and data formats. Despite differences in
computational power, storage capacity, and networking capabilities,
fog nodes must operate cohesively within the fog computing frame-
work [8].
Hierarchical clustering is another important attribute of fog nodes.

These nodes are often organized into hierarchical structures, with
different layers providing various levels of service and processing
capabilities. Lower layers might focus on real-time data processing
close to the end-devices, while higher layers perform more complex
analytics or serve as backups for lower-level nodes. This hierarchical
arrangement ensures efficient resource allocation and enhances fault
tolerance, as higher-level nodes can take over tasks if lower-level
nodes fail.
Manageability is a critical attribute given the complexity of fog com-

puting networks. Fog nodes are typically equipped with advanced
management systems that automate routine tasks such as software
updates, resource allocation, and fault detection. This reduces the
operational overhead of managing large, distributed networks and
ensures that resources are used efficiently. Programmability is a key
feature of fog nodes, allowing them to be customized by various stake-
holders, such as network operators, service providers, and end-users.
This enables fog nodes to adapt to changing network conditions or ap-
plication requirements dynamically. Programmability also facilitates
the deployment of new services and applications without necessitat-
ing changes to the underlying hardware infrastructure, ensuring that
fog computing remains flexible and scalable.

3. Background: Heterogeneous Fog Computing and QoS
Metrics

3.1. Heterogeneous Fog Computing Environments
Fog computing has emerged as a vital paradigm in addressing the
limitations of traditional cloud computing in the context of Inter-
net of Things (IoT) applications. This decentralized model shifts
data processing closer to the edge of the network, thereby reducing
latency and bandwidth consumption, both of which are critical in
scenarios where real-time processing is required. Unlike cloud com-
puting, where data is typically transmitted to remote data centers for
centralized processing, fog computing operates on geographically dis-
tributed nodes situated closer to the data source. These fog nodes play
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This figure illustrates the heterogeneous nature of fog nodes in a fog computing environment. Nodes vary in pro-
cessing power, energy constraints, and connectivity, leading to distinct challenges in scheduling and resource alloca-
tion. The diversity of fog nodes results in differentiated performance characteristics, affecting task execution efficiency.
Task scheduling requires adaptive models to address varying latency, power consumption, and bandwidth demands.

Figure 2. Illustration of a Heterogeneous Fog Computing Environment and Its Challenges

a pivotal role in enabling real-time processing and decision-making
in IoT ecosystems by bringing computation, storage, and networking
resources near end users [9].
A key characteristic of fog computing environments is their in-

herent heterogeneity. The nodes in a fog network can range from
high-performance edge servers with substantial computing resources
to resource-constrained IoT devices with limited processing power,
memory, and storage capacity. This heterogeneity stems from the
diverse range of devices deployed across the network, each designed
to serve specific purposes within the fog ecosystem. The spectrum of
fog devices includes industrial control systems, smart sensors, mobile
devices, and even high-end servers, all of which differ not only in
hardware capabilities but also in their energy efficiency and com-
munication protocols. For instance, a fog node located in a data
center will typically have much higher processing and storage ca-
pabilities compared to a fog node embedded in a smart camera or
a drone, which operates with stringent resource constraints. This
variability in fog nodes complicates the task scheduling process, as
an effective scheduling algorithm must intelligently match tasks to
nodes based on the computational requirements of the task and the
available resources of the nodes.
In addition to heterogeneity, fog computing environments are

dynamic, meaning that the composition of the network is con-
stantly changing. Fog nodes are often deployed in mobile or energy-
constrained environments, and as a result, nodes can frequently join
or leave the network, or experience fluctuations in available resources
due to varying workloads or energy consumption. The mobility of
fog nodes, such as those embedded in vehicles or drones, introduces
complexity as the nodes can move in and out of communication
range, leading to intermittent connectivity and changes in available
bandwidth. Moreover, the dynamic nature of energy availability in
battery-powered devices means that energy consumption must be
carefully managed to avoid node failures or disruptions in service.
These dynamic characteristics require task scheduling algorithms

to be adaptive and resilient. An optimal task scheduling algorithm
must account not only for the computational capabilities and resource
availability of the nodes at a given moment but also for the possibility
of future changes in the network topology or resource availability.
This adaptive approach ensures that the system can maintain high
levels of service quality, even as the composition and capacity of the

fog network change. For example, a task that is allocated to a resource-
rich node initially might need to be migrated to a different node if
the original node experiences an increase in workload or a reduction
in available energy. Such flexibility is essential to maintaining the
robustness and efficiency of the fog computing environment.
To address these challenges, the scheduling process must also con-

sider multiple factors, such as the processing power, memory, and
storage capacities of each fog node, as well as network-related param-
eters like bandwidth and latency. Scheduling decisions must balance
the load across nodes to prevent resource overutilization, which could
lead to performance bottlenecks, and underutilization, which would
waste valuable computational resources. Additionally, the energy
consumption of fog nodes those that are battery-powered, must be
carefully managed to prolong the operational lifetime of the nodes
and the overall network. Thus, the complexity of task scheduling in
heterogeneous fog environments is significantly higher than in more
homogeneous computing environments, such as traditional cloud
computing, where resources are more predictable and standardized.
The heterogeneity of fog nodes necessitates the use of specialized

algorithms capable of handling the diverse constraints and capabil-
ities of the different devices within the network. Traditional task
scheduling approaches, which typically assume a relatively uniform
and stable set of resources, are insufficient for fog computing environ-
ments, as they fail to account for the variability and unpredictability
of the fog nodes. Instead, advanced scheduling algorithms must
leverage real-time information about the state of the network and
the available resources of each node to make dynamic, context-aware
decisions. Such algorithms often incorporate machine learning or
optimization techniques to predict changes in the network and adapt
the scheduling strategy accordingly [10] [9].
A common approach to dealing with heterogeneity and dynamism

in fog computing is to employ a hierarchical task scheduling model,
where tasks are first allocated to a high-level coordinator, which then
distributes them to the most appropriate fog nodes. This allows the
system to take a global view of the network and its resources, ensur-
ing that tasks are allocated in a way that maximizes overall system
efficiency. In some cases, multi-objective optimization techniques
are used to balance multiple criteria, such as minimizing latency,
maximizing resource utilization, and conserving energy, all while
maintaining the quality of service (QoS) requirements for the appli-
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Table 2. Comparison of Cloud and Fog Computing in IoT Environments
Feature Cloud Computing Fog Computing
Processing Location Centralized data centers Distributed, close to end devices
Latency Higher (due to distance to cloud) Lower (due to proximity to data sources)
Resource Scalability High (virtually unlimited) Limited (depends on local nodes)
Energy Consumption High, but efficient in large-scale computations Lower, but must account for energy-constrained devices
Network Dependence Strong dependence on high-speed internet Less dependent, as processing is done locally
Mobility Support Limited High (suitable for mobile environments)
Real-time Processing Limited High (ideal for real-time applications)

cation.

3.2. Quality of Service (QoS) Metrics
In fog computing environments, ensuring high quality of service
(QoS) is crucial for maintaining the performance and reliability of
applications those that require real-time processing and low-latency
communication. Unlike traditional cloud computing, where QoS
metrics are largely determined by the centralized infrastructure, fog
computing introduces amore complex set of QoS challenges due to its
decentralized and heterogeneous nature. Optimizing task placement
in fog networks requires a multi-objective approach, as various QoS
metrics must be considered simultaneously to ensure that the system
meets the diverse requirements of different applications. These met-
rics often include latency, energy consumption, response time, and
resource utilization, among others.
One of the primary motivations for adopting fog computing is the

need to reduce latency, especially for applications that require imme-
diate feedback. Latency refers to the delay between data generation at
the edge of the network and the completion of the corresponding task
processing. In cloud computing, data must be transmitted to distant
data centers, leading to significant delays, especially in applications
with strict real-time requirements, such as autonomous vehicle con-
trol, industrial automation, and augmented reality. Fog computing
addresses this issue by processing data closer to the source, thereby
minimizing the distance that data needs to travel and significantly re-
ducing latency. Consequently, an effective task scheduling algorithm
must prioritize minimizing latency for tasks that are latency-sensitive
and require near-instantaneous responses.
Energy consumption is another critical QoS metric in fog comput-

ing environments, especially for battery-powered fog nodes that have
limited energy resources. In many cases, fog nodes are deployed in
locations where frequent recharging or replacement of batteries is
impractical, such as remote sensors, drones, or mobile devices. As a
result, minimizing energy consumption is essential to prolonging the
operational lifetime of these nodes and ensuring the overall sustain-
ability of the fog network. Task scheduling algorithms must carefully
balance the trade-off between performance and energy efficiency, al-
locating tasks to nodes in a way that minimizes energy consumption
while still meeting the performance requirements of the application.
For example, energy-intensive tasks should be allocated to nodes
with ample energy resources or those that are connected to a reliable
power source, while less energy-demanding tasks can be assigned to
battery-powered nodes to conserve energy.
Response time, which refers to the time taken for the system to

respond to a user request, is closely related to both latency and pro-
cessing time. In fog computing environments, response time can be
impacted by several factors, including network latency, the computa-
tional delay experienced during task execution, and the availability
of resources on the fog nodes. A well-designed task scheduling al-
gorithm must ensure that tasks are executed in a timely manner to
provide a satisfactory user experience for applications that require
real-time interaction. This can be achieved by optimizing the place-
ment of tasks on fog nodes with low latency and sufficient compu-
tational power, as well as by dynamically adjusting the allocation of
tasks based on the current state of the network.

Resource utilization is another important QoS metric in fog com-
puting environments. Efficient utilization of computational and stor-
age resources is essential to preventing bottlenecks and ensuring a
balanced load distribution across the network. In a heterogeneous fog
environment, where nodes vary significantly in terms of their capa-
bilities, it is important to ensure that resources are used efficiently to
avoid both overutilization and underutilization. Overutilized nodes
may experience performance degradation due to excessive workloads,
while
underutilized nodes represent a wasted opportunity for improving

system performance. Task scheduling algorithms must therefore
strive to achieve a balanced distribution of tasks across the network,
taking into account the capabilities and current workloads of each
fog node.

3.3. Challenges in Task Scheduling
Task scheduling in fog computing refers to the process of assigning
computational tasks to available fog nodes in a way that optimizes
the use of resources while meeting the application’s performance
requirements [11]. Unlike in cloud computing, where resources
are abundant and relatively homogeneous, the decentralized and
heterogeneous nature of fog environments makes task scheduling
significantly more complex. A fundamental challenge is the need
to balance multiple objectives simultaneously, such as minimizing
latency, optimizing energy consumption, and maximizing resource
utilization. Given the variety of tasks with differing computational
demands and the diversity of fog nodes with varying capabilities,
an efficient task scheduling algorithm must consider several factors,
including the available processing power, memory, storage, and cur-
rent workload of each node. Additionally, the dynamic nature of fog
networks, where nodes frequently join or leave and their resources
fluctuate complicates the scheduling process, requiring real-time
decision-making and adaptability.
At its core, task scheduling in fog environments involves threemain

components: task allocation, resource monitoring, and scheduling
optimization. Task allocation refers to the process of determining
which fog nodes should execute specific tasks, based on their current
resource availability and the computational requirements of the tasks.
This component is critical in ensuring that tasks are distributed in a
way that maximizes the overall system performance while preventing
individual nodes from becoming overloaded. Resource monitoring is
another essential component, as it involves continuously tracking the
status of fog nodes, including their energy levels, CPU utilization, and
network connectivity. Accurate and real-time resource monitoring
is crucial for making informed scheduling decisions, as it allows the
system to adapt to changes in the network and avoid allocating tasks to
nodes that are already under heavy load or experiencing connectivity
issues. Lastly, scheduling optimization focuses on improving the
overall efficiency of the task scheduling process by optimizing specific
objectives, such as minimizing response time, maximizing resource
utilization, or reducing energy consumption.
One of the primary challenges in fog computing task scheduling

is that it is classified as an NP-hard problem, meaning that finding
an optimal solution within a reasonable time frame is computation-
ally infeasible for large-scale networks. Traditional heuristic-based
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Table 3. Key QoS Metrics in Fog Computing Environments
QoSMetric Description
Latency Time delay between data generation and task completion, typically denoted as 𝜏 = 𝑡completion − 𝑡generation
Energy Consump-
tion

Amount of energy consumed by fog nodes during task execution, represented as 𝐸 = 𝑃 × 𝑡, where 𝑃 is the power
consumption and 𝑡 is the time

Response Time Time taken for the system to respond to user requests, defined as 𝑇𝑟 = 𝑡response − 𝑡request
Resource Utilization Efficiency in utilizing computational and storage resources, modeled as 𝜌 = Used Resources

Total Available Resources

Component Defenition Considerations Impact on System Performance
Task Allocation Determineswhich fog nodes should ex-

ecute specific tasks based on resource
availability and task requirements

Ensures balanced distribution of tasks
across nodes to prevent overloading
and optimize system performance

Maximizes system performance and
prevents bottlenecks

Resource Monitor-
ing

Continuously tracks the status of fog
nodes, including energy levels, CPU
utilization, and network connectivity

Requires accurate, real-time data to
enable informed scheduling decisions
and adaptation to changing network
conditions

Improves scheduling decisions, re-
duces the risk of assigning tasks to
overloaded nodes, and enhances sys-
tem reliability

Scheduling Opti-
mization

Focuses on optimizing the task
scheduling process to meet specific ob-
jectives, such as minimizing response
time or energy consumption

Considers various optimization goals,
such as reducing latency, maximizing
resource utilization, or minimizing en-
ergy use

Enhances system efficiency and en-
sures that key performancemetrics are
met

Table 4. Core components of task scheduling in fog environments.

scheduling algorithms, such as round-robin or first-come, first-served
(FCFS), are commonly used in simpler computing environments.
However, these methods fall short in the context of fog computing, as
they do not consider the heterogeneity of nodes or the dynamic nature
of resource availability. For instance, a round-robin approach, which
assigns tasks in a cyclic manner, may allocate a computationally in-
tensive task to a resource-constrained node, resulting in suboptimal
performance and increased latency. Similarly, FCFS scheduling does
not account for the varying computational requirements of tasks or
the fluctuating resource capacities of fog nodes, leading to inefficient
resource utilization and potential bottlenecks in the network. To
address these limitations, AI-driven task scheduling solutions have
gained prominence. Machine learning algorithms, in particular, offer
a promising approach by enabling systems to learn from historical
data, predict resource availability, and adapt to changing conditions
in real time. Such algorithms can dynamically adjust scheduling
decisions based on the current state of the network, leading to more
efficient task allocation and better overall performance in heteroge-
neous fog environments.

4. AI-Driven Algorithms for Task Scheduling

4.1. AI-Based Heuristic Algorithms
Heuristic-based AI algorithms have long been foundational in the
development of task scheduling approaches within the realm of fog
computing. These algorithms operate on predefined rules or crite-
ria that guide the decision-making process for task assignment and
resource allocation. Their early adoption stems from their relative
simplicity and the ease with which they can be implemented, as com-
pared to more sophisticated machine learning (ML) or reinforcement
learning (RL) methods. The key feature of heuristic algorithms is
their reliance on well-defined heuristics—rules of thumb or problem-
solving strategies—that enable them to provide satisfactory solutions
to scheduling problems without necessarily guaranteeing optimality.
Their suitability for fog computing lies in their ability to strike a bal-
ance between computational complexity and performance, making
them ideal for environments where the overhead of more adaptive,
data-driven methods may be prohibitive.
Among the most prominent heuristic algorithms used in fog com-

puting are genetic algorithms (GA), simulated annealing (SA), and
particle swarm optimization (PSO). These algorithms, while distinct
in their operational mechanisms, share a common goal: to iteratively

improve upon an initial set of solutions by exploring the solution
space and refining task allocation over time. For instance, genetic
algorithms draw inspiration from the process of natural evolution.
They employ operations such as selection, crossover, and mutation
to evolve a population of candidate solutions towards higher-quality
task scheduling outcomes. The iterative nature of genetic algorithms
makes them well-suited for environments where tasks and resources
are relatively static or where the solution space is too vast for brute-
force enumeration. However, the performance of genetic algorithms
can degrade in highly dynamic environments, as the time required to
evolve solutions may render the approach impractical for real-time
decision-making [12].

Simulated annealing, another heuristic approach, is inspired by
the physical process of annealing in metallurgy, where a material is
heated and then gradually cooled to remove defects and optimize its
structural properties. In the context of task scheduling, simulated
annealing works by probabilistically accepting worse solutions early
in the process to escape local optima, with the likelihood of accepting
worse solutions decreasing as the algorithm progresses. This method
is effective in avoiding premature convergence on suboptimal task
schedules, but like genetic algorithms, it is best suited for relatively
stable fog environments where task characteristics do not change
rapidly. The computational cost associated with each iteration is
manageable in small-scale systems, making simulated annealing a
viable option for many fog computing scenarios. However, in envi-
ronments characterized by frequent task arrivals or rapid fluctuations
in resource availability, the cooling schedule—an essential parameter
of simulated annealing—can be difficult to tune for optimal perfor-
mance.

Particle swarm optimization is another widely used heuristic that
simulates the social behavior of flocks of birds or schools of fish.
In PSO, a population of particles explores the search space, with
each particle adjusting its position based on its own experience and
the experience of neighboring particles. The global best and local
best solutions guide the swarm towards better task schedules. PSO
is attractive due to its simplicity and its ability to converge quickly
to high-quality solutions. It is especially effective when applied to
multi-objective task scheduling problems where trade-offs between
conflicting goals, such as minimizing task completion time and max-
imizing resource utilization, must be made. However, as with other
heuristic approaches, PSO can struggle in highly dynamic environ-
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Table 5. Performance Comparison of Heuristic-Based AI Algorithms in Fog Computing
Algorithm Task Completion Time Resource Utilization Scalability

Genetic Algorithm Medium High Low
Simulated Annealing Medium Medium Low

Particle Swarm Optimization Low High Medium

ments when the search space changes frequently due to fluctuating
task loads or resource availability. PSO tends to converge quickly, it
may prematurely settle on suboptimal solutions if not properly tuned
in the presence of complex, multi-modal search spaces.
Unlike machine learning-based approaches, which can learn and

adapt to new task patterns and resource conditions over time, heuris-
tic methods are generally static, relying on fixed rules or strategies
that may not be well-suited to changing environments. In fog comput-
ing scenarios, where the network topology and resource availability
may shift frequently due to the distributed and heterogeneous na-
ture of the system, the static nature of heuristic algorithms can limit
their effectiveness. This limitation is pronounced in larger or more
dynamic fog environments, where task scheduling decisions must
be made in real time and must account for varying levels of resource
contention, network latency, and energy consumption.
To better illustrate the performance characteristics of heuristic-

based AI algorithms in fog computing, it is useful to consider their
application in a small, controlled fog environment. Table 1 provides
a comparison of task scheduling performance across several heuristic
algorithms under typical fog computing conditions. The table shows
that heuristic approaches offer a reasonable balance between schedul-
ing accuracy and computational overhead, they do not scale well as
the complexity of the environment increases.
In Table 5, we see that PSO generally performs best in terms of

task completion time and resource utilization, though its scalability
is only medium. Genetic algorithms, while also high in resource
utilization, tend to suffer from poor scalability and moderate task
completion times. Simulated annealing, on the other hand, offers a
compromise between completion time and resource utilization but
shares the scalability limitations of genetic algorithms. These results
underscore the trade-offs inherent in heuristic-based approaches,
where simplicity and ease of implementation come at the cost of
reduced adaptability and scalability in more complex or dynamic
environments.
The limited scalability of heuristic algorithms makes them more

appropriate for smaller fog computing environments, such as those
found in industrial settings, where the number of tasks and resources
is relatively fixed, and where real-time scheduling demands are mod-
erate. In such scenarios, the overhead of more adaptive AI-based
algorithms may not be justified, and the simplicity of heuristic meth-
ods offers a practical alternative. However, as the size and complexity
of the fog environment grow, the limitations of heuristic algorithms
become more pronounced. For instance, in smart city applications,
where fog nodes must handle a highly dynamic and unpredictable
flow of tasks, the static nature of heuristic rules can result in subopti-
mal resource allocation and increased task completion times.
Moreover, heuristic algorithms often require extensive tuning of

parameters to achieve good performance, especially in fog environ-
ments where tasks have diverse computational requirements and
where network conditions can vary unpredictably. For example, in
genetic algorithms, the choice of population size, crossover rate, and
mutation rate can have a significant impact on the quality of the
scheduling solution. Similarly, in simulated annealing, the cooling
schedule and initial temperature must be carefully selected to bal-
ance exploration and exploitation. Poorly chosen parameters can
lead to premature convergence or excessive computational overhead,
both of which are undesirable in fog computing systems with limited
computational resources. Parameter tuning, while effective in static
or moderately dynamic environments, becomes increasingly difficult

as the scale and dynamism of the fog environment increase.
To address these challenges, some hybrid approaches have been

proposed that combine heuristic algorithmswithmore adaptivemeth-
ods. For example, hybrid genetic algorithms have been developed that
incorporate local search strategies to refine the solutions produced
by the genetic algorithm. These hybrid methods aim to combine the
global search capabilities of heuristic algorithms with the adaptability
of local search or ML-based methods, thereby improving the quality
of task scheduling decisions in dynamic fog environments. Another
approach involves using heuristic algorithms to generate initial so-
lutions, which are then refined using ML techniques that can learn
from past task scheduling decisions. Such hybrid methods represent
a promising avenue for improving the performance of heuristic al-
gorithms in fog computing in environments characterized by high
levels of variability and complexity [13].
Table 2 provides a summary of the trade-offs between heuristic,

machine learning, and hybrid approaches for task scheduling in fog
computing environments.
As shown in Table 6, heuristic algorithms offer low complexity

but lack the adaptability required for dynamic environments. Ma-
chine learning-based algorithms, while highly adaptable, come with
increased computational complexity, making them more suitable
for larger fog environments with abundant computational resources.
Hybrid approaches strike a balance, offering moderate adaptability
and complexity, and are thus seen as a promising direction for future
research in fog computing task scheduling.

4.2. Deep Learning for Task Scheduling
Task scheduling is inherently a challenging problem due to the need
to optimizemultiple, often conflicting, objectives, such asminimizing
execution time, balancing computational load, and optimizing en-
ergy consumption, while simultaneously maintaining high quality of
service (QoS). Deep learning models, with their ability to learn from
vast amounts of data and capture nonlinear relationships, provide a
robust framework for addressing these challenges.
Convolutional neural networks (CNNs) and recurrent neural net-

works (RNNs) have shown great potential in modeling complex
scheduling problems. CNNs, traditionally used for image recognition
tasks, can be adapted to task scheduling by leveraging their ability to
identify spatial hierarchies and patterns within the data. For instance,
tasks with different resource requirements and varying execution
times can be represented as multi-dimensional matrices, with CNNs
effectively capturing the dependencies and constraints inherent in
scheduling. By learning these relationships, CNN-based models can
generate efficient schedules that balance the computational load
across available fog nodes while minimizing overall task completion
time. The hierarchical nature of CNNs also allows these models to
scale well in large, distributed systems, enabling the processing of
vast amounts of data without sacrificing performance.
Recurrent neural networks their more advanced forms like long

short-term memory (LSTM) networks and gated recurrent units
(GRUs), are equally well-suited for scheduling problems that involve
sequential dependencies. Task scheduling often requires consider-
ation of past events or the order in which tasks arrive. RNNs are
capable of maintaining a memory of previous inputs and can model
time-series data, making them highly effective for scheduling tasks
that are interdependent or that require adaptive decision-making over
time. LSTM networks, for example, have been successfully employed
in dynamic scheduling environments where the arrival of new tasks
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Table 6. Comparison of Task Scheduling Approaches in Fog Computing
Approach Adaptability Complexity Suitability for Dynamic Environments

Heuristic Algorithms Low Low Poor
Machine Learning-Based Algorithms High High Good

Hybrid Approaches Medium Medium Moderate

Table 7. Comparison of Traditional and DL-based Scheduling Methods
QoSMetric Traditional Scheduling DL-based Scheduling
Latency Moderate to High Low

Resource Utilization Suboptimal High
Scalability Limited High

Adaptability to Changing Conditions Low High

or the availability of fog nodes changes over time. These models are
able to retain information about prior scheduling decisions and adjust
future actions accordingly, leading to improved system performance
and resource utilization.
A key advantage of DL-based scheduling algorithms lies in their

ability to optimize quality of service (QoS)metrics dynamically. Tradi-
tional schedulingmethods, such as heuristic algorithms or rule-based
systems, often require manual tuning and are limited in their ability
to adapt to changing system conditions or workloads. In contrast,
deep learningmodels can continuously learn and adjust their schedul-
ing strategies based on feedback from the system. This adaptability
is useful in environments characterized by large-scale data flows,
such as Internet of Things (IoT) networks or distributed fog systems,
where the volume of tasks and the availability of resources fluctu-
ate unpredictably. By training on historical data and incorporating
real-time feedback, DL-based algorithms can improve QoS by mini-
mizing latency, optimizing bandwidth usage, and reducing energy
consumption.
DL-based scheduling models are adept at handling the scale and

complexity of modern distributed systems, where the volume of data
can overwhelm traditional models. In environments with large-scale
data flows, such as those found in fog computing, the ability to process
and analyze vast amounts of data in real-time is crucial. CNNs and
RNNs, with their deep architectures, are well-suited for such tasks,
as they can learn to recognize patterns in large datasets that might
be missed by conventional models. This is relevant when scheduling
tasks across multiple fog nodes, where the optimal scheduling policy
may depend on subtle relationships between task requirements, net-
work latency, and node availability. Deep learning models, trained
on large-scale datasets, can capture these relationships and make
real-time scheduling decisions that optimize system performance.
Table 1 illustrates a comparison between traditional scheduling

approaches and DL-based scheduling methods in terms of key QoS
metrics, such as latency, resource utilization, and scalability. As seen
in the table, DL-based methods consistently outperform traditional
techniques, in environments characterized by high task arrival rates
and large data volumes.
Another area where deep learning excels in task scheduling is in

the optimization of energy consumption. In fog computing environ-
ments, energy efficiency is a critical concern, especially as the number
of IoT devices and the scale of data processing continue to grow [14]
[15]. DL-basedmodels, those that incorporate reinforcement learning
(RL) techniques, can dynamically adjust task scheduling to minimize
energy consumption without compromising performance. RL-based
approaches, when integratedwith deep learning architectures, enable
systems to learn optimal scheduling policies through trial and error,
continuously refining their strategies to improve energy efficiency.
By modeling the system as a Markov decision process, where each
scheduling action impacts future states of the system, DL-based mod-
els can make energy-aware scheduling decisions that reduce overall
power consumption.

In environments where the task requirements and system capa-
bilities are highly heterogeneous, DL-based models also provide a
significant advantage by learning to handle diverse workloads. Fog
computing systems typically involve a wide range of tasks with vary-
ing computational demands, network latencies, and deadlines. Tra-
ditional scheduling algorithms often struggle to balance these com-
peting demands, especially when the system needs to prioritize tasks
based on their deadlines or resource requirements. Deep learning
models, however, can be trained on diverse datasets that encompass
a variety of task types and system configurations, allowing them to
generate schedules that optimize resource utilization while meeting
task-specific constraints. For instance, CNNs can be employed to
classify tasks based on their resource requirements, while RNNs can
sequence tasks in a way that maximizes throughput and minimizes
bottlenecks.
The ability of DL-based models to generalize across different

scheduling scenarios is another critical factor in their success. Unlike
heuristic-based algorithms, which often require significant re-tuning
when applied to new environments, DL models can be retrained or
fine-tuned on new datasets to accommodate changes in system ar-
chitecture or workload characteristics. This flexibility is particularly
beneficial in fog and edge computing environments, where the in-
frastructure is often highly dynamic, with fog nodes being added or
removed over time. By incorporating transfer learning techniques,
DL-based scheduling models can be adapted to new environments
with minimal retraining, thereby reducing the computational over-
head associated with model deployment and maintenance.
Table 8 highlights some of the key characteristics of CNNs and

RNNs in the context of task scheduling, providing a comparison of
their strengths and limitations. As shown, while CNNs excel at cap-
turing spatial dependencies and handling large-scale data, RNNs are
effective at modeling temporal dependencies and sequential decision-
making processes.

Table 8. Comparison of CNNs and RNNs for Task Scheduling
Feature CNN RNN

Handling Spatial Dependencies High Moderate
Handling Temporal Dependencies Low High

Scalability High Moderate
Sequential Decision-Making Low High

Training Complexity Moderate High

4.3. Reinforcement Learning for Multi-Objective Optimization
Reinforcement learning (RL) has emerged as a powerful tool for solv-
ing complex optimization problems, those that involve multiple con-
flicting objectives, as is the case in fog computing environments. In a
fog network, tasks must be scheduled across heterogeneous nodes
while optimizing several Quality of Service (QoS) metrics, such as
latency, energy consumption, response time, and resource utilization.
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The dynamic and distributed nature of fog computing, along with the
diverse capabilities of fog nodes, makes traditional heuristic meth-
ods inadequate. RL offers a promising solution by enabling systems
to learn optimal policies through interaction with the environment,
thereby allowing for real-time, adaptive decision-making that contin-
uously improves based on feedback from the system’s performance.
At the core of reinforcement learning is the concept of an agent

that interacts with an environment by taking actions to achieve a goal,
typically represented as maximizing a cumulative reward function.
In the context of fog computing, the RL agent is tasked with making
scheduling decisions, such as assigning tasks to fog nodes based on
the current state of the network. The state could include factors like
node availability, resource utilization, and task requirements, while
the actions correspond to allocating specific tasks to available nodes.
The reward function is designed to reflect the multiple objectives of
the system, such as minimizing latency and energy consumption,
while ensuring that the response time remains within acceptable
limits. By carefully designing the reward structure, RL algorithms
can learn to prioritize different QoS metrics based on the system’s
real-time needs, making them ideal for multi-objective optimization
in fog environments.
One of the key advantages of using reinforcement learning in fog

computing is its ability to handle the trade-offs between conflicting
objectives. For example, reducing latency often requires allocating
tasks to nodes with low communication delay, but these nodes may
be energy-constrained, which could reduce their operational lifetime.
Conversely, tasks assigned to nodes with higher energy reserves may
experience longer delays due to their distance from the data source.
RL algorithms can effectively balance these trade-offs by adjusting
task assignments dynamically as network conditions evolve. Unlike
static scheduling algorithms, which make decisions based on pre-
defined criteria, RL agents continuously learn from the environment
and adapt their policies over time. This ability to adapt is especially
valuable in fog computing environments, where network topology
and resource availability can change frequently due to node mobility,
fluctuating workloads, and varying energy levels.
Multi-agent reinforcement learning (MARL) approaches offer fur-

ther enhancements to the scalability and efficiency of task scheduling
in large-scale fog computing environments. In MARL, multiple RL
agents operate simultaneously, each responsible for optimizing a
subset of the overall system. For instance, one agent may focus on
optimizing energy consumption by managing task assignments for
energy-constrained nodes, while another agent may prioritize reduc-
ing latency by ensuring that time-sensitive tasks are executed on
nodes with low communication delays. The agents work collabora-
tively, sharing information and learning from each other’s actions
to achieve a global optimization of the system’s objectives. MARL
approaches are well-suited for distributed fog environments, where
the computational complexity of scheduling decisions can become
prohibitive for a single centralized agent. By distributing the decision-
making process across multiple agents, MARL enables more efficient
scaling, ensuring that even large and complex fog networks can be
optimized effectively without overwhelming the scheduling system
[16].
In addition to scalability, MARL also enhances the robustness of

task scheduling in fog environments. In highly dynamic networks,
where nodes may frequently join or leave the system, single-agent
RL approaches may struggle to keep up with the rapid changes in
network topology and resource availability. By contrast, multi-agent
systems can localize decision-making, allowing each agent to focus
on a specific region of the network or a subset of tasks. This local-
ization improves the system’s ability to respond quickly to changes,
as each agent operates independently while still contributing to the
overall optimization process. MARL reduces the computational bur-
den on any single agent, making it possible to handle the high degree
of heterogeneity and dynamism that characterizes fog computing

environments [17] [4].

4.4. Hybrid AI Approaches

Hybrid AI approaches represent a sophisticated and promising av-
enue for optimizing task scheduling in fog computing environments
by combining the strengths of multiple AI techniques. Given the
complexity and multi-dimensional nature of fog computing—where
scheduling decisions must account for diverse QoS metrics such as
latency, energy consumption, response time, and resource utiliza-
tion—traditional AI methods often fall short in addressing all aspects
of the problem effectively. Hybrid AImodels capitalize on the comple-
mentary advantages of various algorithms, merging different learning
and optimization techniques to deliver more robust, adaptive, and
efficient solutions for real-time task scheduling in dynamic and het-
erogeneous fog environments [5].
One common form of hybrid AI in fog computing involves the

integration of machine learning (ML) with reinforcement learning
(RL). In such systems, machine learning models are used to pre-
dict key network metrics, such as task loads, resource availability,
or network congestion, based on historical data. These predictions
enable more informed decision-making by providing RL agents with
valuable contextual information, allowing them to focus on making
real-time, adaptive scheduling decisions. For instance, an ML model
might forecast an impending spike in task load based on past trends
or changes in user behavior, giving the RL agent advance notice to
preemptively redistribute tasks or allocate additional resources. This
collaboration between predictive ML and adaptive RL ensures that
task scheduling can both anticipate future demands and respond dy-
namically to evolving network conditions, leading to more efficient
and timely execution of tasks across the fog nodes.
In addition to ML-RL hybrids, other approaches combine deep

learning (DL) with evolutionary algorithms such as genetic algo-
rithms (GA) to further enhance the task scheduling process. Deep
learning excels at identifying complex patterns in large datasets, mak-
ing it highly effective for analyzing the vast and often unstructured
data generated by fog networks, such as traffic patterns, node usage,
or task execution histories. When used in conjunction with genetic
algorithms, which are adept at optimizing solutions by mimicking
the process of natural selection, hybrid models can achieve a power-
ful balance between exploration and exploitation in the scheduling
process. Genetic algorithms are well-suited for large search spaces,
where they can iteratively evolve scheduling strategies by selecting,
mutating, and combining the best-performing solutions from pre-
vious iterations. By integrating deep learning’s capacity for deep
pattern recognition with the exploration-driven optimization of ge-
netic algorithms, hybridmodels can intelligently explore a wide range
of potential scheduling strategies while continuously refining and
improving their approach to meet the system’s dynamic needs.
Such a hybrid deep learning-genetic algorithm (DL-GA) system

might work as follows: the deep learning component analyzes histor-
ical task data and identifies patterns that correlate with optimal task
placement, such as the most efficient resource utilization based on
past performance metrics. This information is fed into the genetic
algorithm, which explores various combinations of task assignments
and resource allocations, guided by the insights provided by the deep
learning model. Over time, the genetic algorithm evolves its schedul-
ing strategy, learning which node-task pairings result in the best
overall system performance in terms of latency, energy efficiency,
and response time. By balancing exploration (i.e., trying new com-
binations of task allocations) and exploitation (i.e., refining already
successful strategies), the hybrid DL-GA approach can effectively
navigate the large scheduling of a fog computing environment.
Hybrid AI approaches also enable a more holistic treatment of

the trade-offs involved in multi-objective optimization. In fog com-
puting, optimizing one QoS metric often comes at the expense of
another—such as prioritizing low-latency task execution, which may
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increase energy consumption in battery-powered fog nodes. By lever-
agingmultiple AI techniques, hybridmodels can better navigate these
trade-offs. For example, reinforcement learning may prioritize im-
mediate QoS needs, such as reducing response time for real-time
applications, while a deep learning model might assess longer-term
impacts, such as node energy depletion. In this scenario, a hybrid sys-
tem would balance short-term scheduling decisions with long-term
resource sustainability, achieving a more nuanced optimization than
any single technique could accomplish on its own.
Additionally, hybrid AI approaches offer significant advantages

in terms of scalability and adaptability in large and geographically
dispersed fog networks. As the scale of the network grows, so too does
the complexity of the task scheduling problem, with an increasing
number of nodes, tasks, and variables to consider. Hybrid AI models
those that integrate distributed learning techniques, can break down
the problem into more manageable sub-problems. For example, ma-
chine learning models deployed at local fog clusters could predict
local resource availability and task loads, while reinforcement learn-
ing agents operate globally to make high-level scheduling decisions
that optimize the entire network. This division of labor between
local and global optimization components enables hybrid models to
scale effectively, ensuring that task scheduling remains efficient and
responsive even as the network grows in size and complexity.

5. Proposed AI-Driven Task Scheduling Model

This section presents a novel AI-driven task schedulingmodel tailored
to optimize multiple Quality of Service (QoS) metrics, specifically
in heterogeneous fog computing environments. Fog computing is a
decentralized computing architecture that extends cloud computing
capabilities closer to the network edge. It is critical in real-time,
latency-sensitive applications such as IoT (Internet of Things), smart
cities, and autonomous systems. One of the most challenging aspects
of fog computing is task scheduling, which must account for highly
dynamic conditions, resource heterogeneity, and the necessity to
balance multiple, often conflicting QoS objectives such as latency,
energy consumption, and response time.
The proposed model leverages advanced artificial intelligence tech-

niques, integrating machine learning for predictive scheduling, rein-
forcement learning for dynamic adaptation, and a hybrid AI-based
multi-objective optimization approach. This structured approach en-
sures that all critical QoS parameters are simultaneously optimized
without sacrificing system performance. The following sections dis-
cuss the technical details of the proposed model’s key components:
predictive task placement, dynamic adaptation, and multi-objective
optimization.

Predictive Task Placement

The foundation of the proposed task scheduling model lies in its
ability to predict future workloads and node availability accurately.
In heterogeneous fog environments, resource availability fluctuates
due to the dynamic nature of edge devices, network conditions, and
varying task requirements. Therefore, the task placement decision
must consider future conditions to prevent suboptimal allocations
that can lead to increased latency or node overload.
To address this challenge, we employmachine learning algorithms,

specifically time series forecasting models such as Long Short-Term
Memory (LSTM) networks and Recurrent Neural Networks (RNNs).
These models are effective in capturing temporal dependencies in
data, allowing them to predict task loads and node availability over
time. The training data for these models are gathered from historical
system performance logs, including metrics like task execution time,
CPU usage, network latency, and energy consumption.
The predictive task placement module processes the incoming

task stream and the predicted resource availability at each node in
the fog network. Based on this information, tasks are assigned to
nodes that can handle the anticipated workload while minimizing

QoS metrics such as latency and energy consumption. Specifically,
the objective function used in the machine learning model aims to
balance task placement by considering the following parameters: (i)
the predicted latency for each task on the given node, (ii) the energy
consumption incurred by executing the task, and (iii) the node’s
expected availability based on predicted workloads.
A key feature of this module is its use of a weighted heuristic

function that prioritizes nodes with the lowest predicted latency and
energy consumption. For example, if the network detects a task
with high computational requirements, the system predicts which
nodes will be underutilized in the near future and assigns the task
accordingly. This minimizes the chance of node overload and reduces
the likelihood of bottlenecks. By integrating predictive analytics into
the task placement process, we can ensure that the scheduling system
is proactive, rather than reactive, to changes in the network.

Dynamic Adaptation through Reinforcement Learning

While predictive task placement is vital, fog computing environments
are highly dynamic, and the network conditions can change rapidly
due to fluctuating workloads, network congestion, or node failures.
To handle such variability, the proposed model integrates reinforce-
ment learning (RL) agents to dynamically adapt task scheduling
decisions in real-time. Reinforcement learning is well-suited for such
scenarios, as it allows the system to learn optimal policies based on
continuous feedback from the environment.
The RL agents in our model are designed to adjust task allocations

by learning from past decisions and network states. They continu-
ously monitor the system’s performance metrics, such as response
time and node utilization, and adjust task placement strategies ac-
cordingly. The reinforcement learning framework we adopt involves
a Markov Decision Process (MDP), where the system’s state repre-
sents the current resource availability and task queue, the action
space consists of possible task allocation strategies, and the reward
function is based on QoS improvements like reduced latency and
minimized energy consumption.
At each time step, the RL agent evaluates the current system state

and selects an action (task allocation) that maximizes the cumula-
tive reward. If the network conditions change unexpectedly, such
as a spike in task requests or a node failure, the RL agent quickly
adapts the scheduling policy to redistribute tasks and avoid potential
system degradation. Over time, the RL agent converges to an opti-
mal scheduling policy that balances real-time responsiveness with
long-term QoS optimization. By leveraging the adaptability of rein-
forcement learning, our model ensures that task scheduling remains
efficient even in highly dynamic fog computing environments.

Multi-Objective Optimization

In fog computing, multiple QoS metrics must be optimized simulta-
neously, often with competing objectives such as minimizing latency,
reducing energy consumption, and improving system response time.
Traditional scheduling approaches often focus on optimizing a sin-
gle QoS metric, which can lead to suboptimal results for the system
as a whole. To address this, our proposed model employs a hybrid
AI-based multi-objective optimization approach that balances all key
QoS metrics.
The multi-objective optimization module operates on the outputs

of the predictive task placement and dynamic adaptation layers, using
a combination of techniques such as genetic algorithms and Pareto-
based optimization to find the best trade-off between conflicting
objectives. Genetic algorithms (GAs) are well-suited for this task due
to their ability to explore a large search space and converge to an
optimal or near-optimal solution over multiple generations. The GA
in our model operates by encoding task allocation strategies as chro-
mosomes, with fitness functions that evaluate the QoS performance
of each strategy based on latency, energy consumption, and response
time.
To ensure that no single QoS metric is overly prioritized at the
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Figure 4. Architecture Diagram for Dynamic Adaptation through Reinforcement Learning

expense of others, we employ a Pareto optimization framework. In
this framework, the system evaluates task allocation strategies based
on Pareto dominance, where a solution is considered optimal if no

other solution improves one QoS metric without degrading another.
This approach allows us to generate a Pareto front of non-dominated
solutions, from which the most suitable task allocation strategy can
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Figure 5. Multi-Objective Optimization using Genetic Algorithm and Pareto Front

be selected based on the current system requirements and priorities.
The hybrid nature of our multi-objective optimization approach

allows the system to dynamically adjust the trade-offs between com-
peting QoS metrics, ensuring that the system remains flexible and
can adapt to changing conditions. For example, in situations where
energy consumption is critical, the system may prioritize energy effi-
ciency while still maintaining acceptable latency and response times.
Conversely, during periods of high task demand, the system may
prioritize minimizing latency to ensure timely task execution.
The modular nature of the proposed model allows for future en-

hancements, such as incorporating additional QoS metrics or ex-
tending the model to support larger-scale fog and edge computing
networks. The integration of AI techniques ensures that the model
remains adaptable to the dynamic and heterogeneous nature of fog
computing, providing a scalable and flexible solution for real-time,
latency-sensitive applications.

6. Conclusion

Fog computing environments are inherently heterogeneous, due to
the diversity in fog nodes, which differ in processing power, storage,
energy efficiency, and network bandwidth. Some nodes may have
limited energy resources, such as battery-powered devices, while
others offer high processing capabilities but may be geographically
distant from the edge. This diversity presents significant challenges
for resource allocation and task scheduling. Traditional scheduling
models that assume uniformity across nodes often fail to optimize
performance within such varied infrastructures. Artificial intelli-
gence (AI) has become an essential component for optimizing task
scheduling within heterogeneous environments like fog computing.
Traditional scheduling algorithms, often based on heuristics, struggle
to cope with the complexity and dynamic nature of fog systems. AI-
based methods, especially those leveraging machine learning (ML)
and reinforcement learning (RL), offer solutions that can learn from

historical data and adapt to changing conditions. These techniques
can predict future task demands, select optimal fog nodes for task ex-
ecution, and adjust task assignments in real-time to enhance system
performance. Task scheduling plays a critical role in the operation
of fog computing systems. Effective scheduling ensures that tasks
are assigned to appropriate fog nodes based on factors such as their
computational capacity, energy consumption, and network proximity.
The goal of task scheduling is to minimize system costs—such as
latency, energy consumption, and response time—while ensuring
that application-specific quality of service (QoS) requirements are
satisfied. Unlike the cloud, where computational resources tend to be
abundant and uniform, the constraints in fog environments demand
more sophisticated, adaptive scheduling strategies.
Heuristic-based AI algorithms were among the earliest approaches

applied to task scheduling in fog computing. These algorithms rely
on predefined rules or criteria to make decisions, with AI techniques
used to improve the selection and optimization of these rules. Exam-
ples include genetic algorithms, simulated annealing, and particle
swarm optimization. Though less adaptive than ML or RL tech-
niques, heuristic approaches strike a balance between complexity
and performance, making them suitable for smaller or less dynamic
fog environments.
Deep learning (DL) models convolutional neural networks (CNNs)

and recurrent neural networks (RNNs), are effective in modeling the
complexities of task scheduling. These models can capture intricate
relationships between task requirements and fog node capabilities,
improving QoSmetrics over time. DL-based algorithms are especially
useful in large-scale data environments, where traditional models
might struggle to handle the volume and variability of data flows.
Reinforcement learning (RL) has shown considerable promise in

multi-objective optimization, wheremultiple QoSmetricsmust be op-
timized simultaneously. In fog computing, RL agents can be trained
to balance key metrics—such as latency, energy consumption, and
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response time—while adapting to changes in network conditions and
fog node availability. Multi-agent RL systems, where multiple agents
collaborate to optimize different aspects of the system, can enhance
scalability and performance in large fog environments.
Hybrid AI techniques combine the strengths of various AI meth-

ods to improve task scheduling. For instance, a hybrid approach
might involve using machine learning to predict task loads, while
reinforcement learning is employed to adapt scheduling decisions
in real time. Another hybrid model could integrate deep learning
with genetic algorithms to strike a balance between exploration and
exploitation during scheduling. By leveraging the advantages of mul-
tiple AI techniques, hybrid approaches offer improved performance
and adaptability.
This paper also presents an AI-driven task scheduling model de-

signed to optimize multiple QoS metrics in heterogeneous fog com-
puting environments. The model combines machine learning for
predictive scheduling, reinforcement learning for real-time dynamic
adaptation, and a hybrid approach for multi-objective optimization.
Machine learning algorithms predict future task loads and node avail-
ability, ensuring efficient task allocation to minimize latency and
energy consumption. Reinforcement learning agents continuously
adjust task assignments in real time, adapting to changing network
conditions to improve response times and avoid node overload. The
hybrid AI framework balances latency, energy use, and response
time, optimizing all QoS metrics without compromising system per-
formance.
While the proposed AI-driven task scheduling framework demon-

strates significant improvements in optimizing multiple QoS metrics
in heterogeneous fog computing environments, it is not without limi-
tations. Several challenges and areas for potential improvement exist,
which could impact the performance, scalability, and practicality of
the system under certain conditions.
One major limitation of the proposed framework is its reliance on

accurate and extensive historical data for training the machine learn-
ing models in the predictive task placement module. In real-world
fog computing environments, such historical data may be incomplete,
noisy, or unavailable, especially in newly deployed systems or rapidly
changing environments. Without sufficient training data, the accu-
racy of predictions regarding future task loads and node availability
may suffer, leading to suboptimal task placements that negatively af-
fect latency, energy consumption, and overall system performance. In
addition, themodel’s ability to generalize to unseen or rare conditions,
such as unexpected spikes in task demand or sudden node failures,
may be limited if these scenarios were not adequately represented in
the training data.
Another limitation is the complexity and computational overhead

associated with integrating multiple AI-based components the re-
inforcement learning agents used for dynamic adaptation. While
reinforcement learning provides a powerful mechanism for contin-
uously adapting task scheduling decisions in response to changing
network conditions, it can be computationally intensive during the
learning phase. This could result in increased processing time and
resource usage, which may be undesirable in resource-constrained
fog environments where real-time responsiveness is critical. The
exploration-exploitation trade-off inherent in reinforcement learning
can lead to suboptimal decisions during the early phases of deploy-
ment, as the system requires time to learn optimal policies through
interactions with the environment.
The multi-objective optimization module, while effective in bal-

ancing competing QoS metrics, also introduces challenges in terms
of complexity and convergence. Genetic algorithms, which form the
core of the optimization process, are known for their ability to explore
large solution spaces; however, they may require significant compu-
tational resources and time to converge to a near-optimal solution
in large-scale fog networks with many nodes and tasks. In scenar-
ios where real-time decision-making is required, the time taken to

perform multi-objective optimization could introduce delays that
degrade system performance. Additionally, the Pareto-based opti-
mization approach, while providing a balanced trade-off between
QoS metrics, may not always yield solutions that are optimal for spe-
cific application requirements when the priorities of the QoS metrics
shift dynamically over time.
As the number of edge nodes and tasks in a fog computing net-

work increases, the computational complexity of both the predictive
task placement and multi-objective optimization modules grows ac-
cordingly. In large-scale networks, the overhead associated with
continuously predicting task loads, adapting to changing conditions,
and optimizing multiple QoS metrics could become prohibitive. This
may limit the applicability of the framework in environments with
high task throughput or those requiring fine-grained control over task
scheduling in real time. Techniques such as distributed optimization
or hierarchical schedulingmay be needed to address scalability issues,
but these come with their own set of trade-offs, such as increased
coordination overhead or reduced control over individual nodes.
Another limitation of the proposed framework is its assumption

of accurate monitoring and communication capabilities across all
nodes in the fog computing network. The framework relies heavily
on real-time data from sensors and monitoring tools to inform its
predictions, dynamic adaptations, and optimization decisions. In
environments where communication is unreliable, such as in remote
or highly congested networks, the quality of the data feeding into the
scheduling framework could be compromised. This may result in
inaccurate predictions, delayed responses, or suboptimal task allo-
cations in scenarios where latency-sensitive applications are being
deployed. Addressing this issue would require mechanisms to han-
dle missing or delayed data, such as through redundancy, predictive
analytics for missing data, or decentralized control systems.
The proposed framework primarily focuses on three QoS metrics:

latency, energy consumption, and response time. While these are
critical in most fog computing applications, there are other important
QoS metrics that may be relevant depending on the specific use case.
For example, metrics such as security, privacy, reliability, and fault
tolerance are becoming increasingly important in modern fog and
edge computing environments in healthcare, autonomous vehicles,
and smart grids. The current framework does not directly account
for these additional metrics, and extending the model to incorporate
themwould require significantmodifications to both the optimization
algorithms and the underlying architecture. This could introduce
additional complexity and trade-offs, such as increased overhead or
reduced focus on latency and energy efficiency.
The framework assumes that all nodes in the fog computing en-

vironment are equally capable of running machine learning models
and reinforcement learning agents, whichmay not be practical in real-
world scenarios. Fog networks often consist of highly heterogeneous
devices, ranging from resource-rich servers to resource-constrained
edge devices such as sensors and actuators. The computational de-
mands of the AI-driven modules those involving reinforcement learn-
ing andmulti-objective optimization, may not be feasible for all nodes
in the network. This could necessitate the offloading of computa-
tionally intensive tasks to more powerful nodes or centralized cloud
servers, introducing additional communication delays and negating
some of the benefits of fog computing, such as low latency and local-
ized processing.
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